
Jing-yun Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9275799/publications.pdf Version: 2024-02-01

LINC-VUN YE

#	Article	IF	CITATIONS
1	Advances in studies of the structural effects of supported Ni catalysts for CO ₂ hydrogenation: from nanoparticle to single atom catalyst. Journal of Materials Chemistry A, 2022, 10, 5792-5812.	5.2	42
2	Simple Approximation for the Ideal Reference State of Gases Adsorbed on Solid-State Surfaces. Journal of the American Chemical Society, 2022, 144, 12850-12860.	6.6	3
3	Cobalt-Group 13 Complexes Catalyze CO ₂ Hydrogenation via a Co(â^'I)/Co(I) Redox Cycle. ACS Catalysis, 2020, 10, 2459-2470.	5.5	55
4	Copper-zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO2 to methanol. Nature Communications, 2020, 11, 5849.	5.8	86
5	Catalytic Conversion Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol and 2-Methylfuran at Terrace, Step, and Corner Sites on Ni. ACS Catalysis, 2020, 10, 7240-7249.	5.5	31
6	Mechanistic Study on the Origin of the <i>Trans</i> Selectivity in Alkyne Semihydrogenation by a Heterobimetallic Rhodium–Gallium Catalyst in a Metal–Organic Framework. Organometallics, 2019, 38, 3466-3473.	1.1	16
7	Thermodynamic and kinetic studies of H ₂ and N ₂ binding to bimetallic nickel-group 13 complexes and neutron structure of a Ni(Î- ² -H ₂) adduct. Chemical Science, 2019, 10, 7029-7042.	3.7	38
8	Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 9292-9304.	6.6	131
9	Enhanced Activity of Heterogeneous Pd(II) Catalysts on Acid-Functionalized Metal–Organic Frameworks. ACS Catalysis, 2019, 9, 5383-5390.	5.5	77
10	Computational screening of MOF-supported transition metal catalysts for activity and selectivity in ethylene dimerization. Journal of Catalysis, 2018, 360, 160-167.	3.1	44
11	Rationalizing the Reactivity of Bimetallic Molecular Catalysts for CO ₂ Hydrogenation. ACS Catalysis, 2018, 8, 4955-4968.	5.5	39
12	Organic Linker Effect on the Growth and Diffusion of Cu Clusters in a Metal–Organic Framework. Journal of Physical Chemistry C, 2018, 122, 26987-26997.	1.5	13
13	Well-Defined Rhodium–Gallium Catalytic Sites in a Metal–Organic Framework: Promoter-Controlled Selectivity in Alkyne Semihydrogenation to <i>E</i> -Alkenes. Journal of the American Chemical Society, 2018, 140, 15309-15318.	6.6	88
14	The effect of topology in Lewis pair functionalized metal organic frameworks on CO ₂ adsorption and hydrogenation. Catalysis Science and Technology, 2018, 8, 4609-4617.	2.1	14
15	Beyond the Active Site: Tuning the Activity and Selectivity of a Metal–Organic Framework-Supported Ni Catalyst for Ethylene Dimerization. Journal of the American Chemical Society, 2018, 140, 11174-11178.	6.6	94
16	Screening the activity of Lewis pairs for hydrogenation of CO ₂ . Molecular Simulation, 2017, 43, 821-827.	0.9	12
17	CO ₂ activation on Cu-based Zr-decorated nanoparticles. Catalysis Science and Technology, 2017, 7, 2245-2251.	2.1	26
18	Single Ni atoms and Ni4 clusters have similar catalytic activity for ethylene dimerization. Journal of Catalysis, 2017, 354, 278-286.	3.1	44

Jing-yun Ye

#	Article	IF	CITATIONS
19	A Bimetallic Nickel–Gallium Complex Catalyzes CO ₂ Hydrogenation via the Intermediacy of an Anionic d ¹⁰ Nickel Hydride. Journal of the American Chemical Society, 2017, 139, 14244-14250.	6.6	128
20	CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy. Applied Catalysis B: Environmental, 2017, 218, 488-497.	10.8	460
21	Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires. Journal of the American Chemical Society, 2017, 139, 10410-10418.	6.6	74
22	Catalytic hydrogenation of CO ₂ to methanol in a Lewis pair functionalized MOF. Catalysis Science and Technology, 2016, 6, 8392-8405.	2.1	75
23	Effect of PdIn bimetallic particle formation on CO 2 reduction over the Pd–In/SiO 2 catalyst. Chemical Engineering Science, 2015, 135, 193-201.	1.9	91
24	Design of Lewis Pair-Functionalized Metal Organic Frameworks for CO ₂ Hydrogenation. ACS Catalysis, 2015, 5, 2921-2928.	5.5	137
25	Screening Lewis Pair Moieties for Catalytic Hydrogenation of CO ₂ in Functionalized UiO-66. ACS Catalysis, 2015, 5, 6219-6229.	5.5	80
26	Hydrogenation of CO2 to methanol over In2O3 catalyst. Journal of CO2 Utilization, 2015, 12, 1-6.	3.3	236
27	In ₂ O ₃ as a promising catalyst for CO ₂ utilization: A case study with reverse water gas shift over In ₂ O ₃ . , 2014, 4, 140-144.		56
28	Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: A combined DFT and kinetic study. Journal of Catalysis, 2014, 317, 44-53.	3.1	196
29	Imaging reactions of acetone with oxygen adatoms on partially oxidized TiO2(110). Physical Chemistry Chemical Physics, 2013, 15, 13897.	1.3	9
30	Active Oxygen Vacancy Site for Methanol Synthesis from CO ₂ Hydrogenation on In ₂ O ₃ (110): A DFT Study. ACS Catalysis, 2013, 3, 1296-1306.	5.5	530
31	DFT Study of CO ₂ Adsorption and Hydrogenation on the In ₂ O ₃ Surface. Journal of Physical Chemistry C, 2012, 116, 7817-7825.	1.5	265
32	A DFT study of methanol dehydrogenation on the PdIn(110) surface. Physical Chemistry Chemical Physics, 2012, 14, 16660.	1.3	27
33	Acetone-Assisted Oxygen Vacancy Diffusion on TiO ₂ (110). Journal of Physical Chemistry Letters, 2012, 3, 2970-2974.	2.1	18
34	Tunability of Band Gaps in Metal–Organic Frameworks. Inorganic Chemistry, 2012, 51, 9039-9044.	1.9	148
35	Progresses in the Preparation of Coke Resistant Niâ€based Catalyst for Steam and CO ₂ Reforming of Methane. ChemCatChem, 2011, 3, 529-541.	1.8	535
36	Cu3(BTC)2: CO oxidation over MOF based catalysts. Chemical Communications, 2011, 47, 2167.	2.2	131