
Matthew D Yates

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9275516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoliter scale electrochemistry of natural and engineered electroactive bacteria. Bioelectrochemistry, 2021, 137, 107644.	4.6	12
2	Biofilm structure, dynamics, and ecology of an upscaled biocathode wastewater microbial fuel cell. Biotechnology and Bioengineering, 2021, 118, 1305-1316.	3.3	5
3	Evidence of a Streamlined Extracellular Electron Transfer Pathway from Biofilm Structure, Metabolic Stratification, and Long-Range Electron Transfer Parameters. Applied and Environmental Microbiology, 2021, 87, e0070621.	3.1	13
4	Metagenomic and Metatranscriptomic Characterization of a Microbial Community That Catalyzes Both Energy-Generating and Energy-Storing Electrode Reactions. Applied and Environmental Microbiology, 2021, 87, e0167621.	3.1	10
5	Redox Characterization of Electrode-Immobilized Bacterial Microcompartment Shell Proteins Engineered To Bind Metal Centers. ACS Applied Bio Materials, 2020, 3, 685-692.	4.6	9
6	Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms. Cell, 2020, 182, 919-932.e19.	28.9	166
7	Activation of Protein Expression in Electroactive Biofilms. ACS Synthetic Biology, 2020, 9, 1958-1967.	3.8	11
8	Electrochemical Characterization of Marinobacter atlanticus Strain CP1 Suggests a Role for Trace Minerals in Electrogenic Activity. Frontiers in Energy Research, 2019, 7, .	2.3	11
9	Engineered living conductive biofilms as functional materials. MRS Communications, 2019, 9, 505-517.	1.8	31
10	Spatially Resolved Chemical Analysis of <i>Geobacter sulfurreducens</i> Cell Surface. ACS Nano, 2019, 13, 4834-4842.	14.6	10
11	On the relationship between long-distance and heterogeneous electron transfer in electrode-grown Geobacter sulfurreducens biofilms. Bioelectrochemistry, 2018, 119, 111-118.	4.6	12
12	Application of electrochemical surface plasmon resonance (ESPR) to the study of electroactive microbial biofilms. Physical Chemistry Chemical Physics, 2018, 20, 25648-25656.	2.8	17
13	Internal Redox Polarity of an Individual G. sulfurreducens Bacterial Cell Attached to an Inorganic Substrate. ChemPhysChem, 2018, 19, 1820-1829.	2.1	0
14	Redox-gradient driven electron transport in a mixed community anodic biofilm. FEMS Microbiology Ecology, 2018, 94, .	2.7	16
15	Internal Redox Polarity of an Individual G. sulfurreducens Bacterial Cell Attached to an Inorganic Substrate. ChemPhysChem, 2018, 19, 1801-1801.	2.1	0
16	Microbial Electrochemical Energy Storage and Recovery in a Combined Electrotrophic and Electrogenic Biofilm. Environmental Science and Technology Letters, 2017, 4, 374-379.	8.7	34
17	Toward understanding long-distance extracellular electron transport in an electroautotrophic microbial community. Energy and Environmental Science, 2016, 9, 3544-3558.	30.8	69
18	Measuring conductivity of living Geobacter sulfurreducens biofilms. Nature Nanotechnology, 2016, 11, 910-913.	31.5	99

MATTHEW D YATES

#	Article	IF	CITATIONS
19	Biofilm as a redox conductor: a systematic study of the moisture and temperature dependence of its electrical properties. Physical Chemistry Chemical Physics, 2016, 18, 17815-17821.	2.8	40
20	<i>Methanobacterium</i> Dominates Biocathodic Archaeal Communities in Methanogenic Microbial Electrolysis Cells. ACS Sustainable Chemistry and Engineering, 2015, 3, 1668-1676.	6.7	130
21	Alamethicin Suppresses Methanogenesis and Promotes Acetogenesis in Bioelectrochemical Systems. Applied and Environmental Microbiology, 2015, 81, 3863-3868.	3.1	25
22	Thermally activated long range electron transport in living biofilms. Physical Chemistry Chemical Physics, 2015, 17, 32564-32570.	2.8	108
23	Effects of constant or dynamic low anode potentials on microbial community development in bioelectrochemical systems. Applied Microbiology and Biotechnology, 2015, 99, 9319-9329.	3.6	18
24	Response to Comment on Microbial Community Composition Is Unaffected by Anode Potential. Environmental Science & Technology, 2014, 48, 14853-14854.	10.0	7
25	Biotemplated Palladium Catalysts Can Be Stabilized on Different Support Materials. ChemElectroChem, 2014, 1, 1867-1873.	3.4	12
26	Microbial Community Composition Is Unaffected by Anode Potential. Environmental Science & Technology, 2014, 48, 1352-1358.	10.0	171
27	Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis. ACS Sustainable Chemistry and Engineering, 2014, 2, 910-917.	6.7	127
28	Hydrogen evolution catalyzed by viable and non-viable cells on biocathodes. International Journal of Hydrogen Energy, 2014, 39, 16841-16851.	7.1	48
29	Exoelectrogenic biofilm as a template for sustainable formation of a catalytic mesoporous structure. Biotechnology and Bioengineering, 2014, 111, 2349-2354.	3.3	19
30	Examination of protein degradation in continuous flow, microbial electrolysis cells treating fermentation wastewater. Bioresource Technology, 2014, 171, 182-186.	9.6	43
31	The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells. Frontiers in Microbiology, 2014, 5, 778.	3.5	113
32	Response to "Comment on Extracellular Palladium Nanoparticle Production Using <i>Geobacter sulfurreducens</i> ― ACS Sustainable Chemistry and Engineering, 2013, 1, 1346-1347.	6.7	0
33	Extracellular Palladium Nanoparticle Production using Geobacter sulfurreducens. ACS Sustainable Chemistry and Engineering, 2013, 1, 1165-1171.	6.7	109
34	Convergent development of anodic bacterial communities in microbial fuel cells. ISME Journal, 2012, 6, 2002-2013.	9.8	190
35	Set potential regulation reveals additional oxidation peaks of Geobacter sulfurreducens anodic biofilms. Electrochemistry Communications, 2012, 22, 116-119.	4.7	100
36	Active Solarization as a Nonchemical Alternative to Soil Fumigation for Controlling Pests. Soil Science Society of America Journal, 2011, 75, 9-16.	2.2	6

#	Article	IF	CITATIONS
37	Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments. Bioresource Technology, 2011, 102, 7301-7306.	9.6	117
38	Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Applied Microbiology and Biotechnology, 2010, 88, 371-380.	3.6	104