Ruth Welti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9275455/publications.pdf

Version: 2024-02-01

20961 25034 14,121 134 57 115 citations h-index g-index papers 136 136 136 14242 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Acyl-Lipid Metabolism. The Arabidopsis Book, 2013, 11, e0161.	0.5	974
2	Profiling Membrane Lipids in Plant Stress Responses. Journal of Biological Chemistry, 2002, 277, 31994-32002.	3.4	946
3	Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nature Protocols, 2010, 5, 986-992.	12.0	792
4	Signaling functions of phosphatidic acid. Progress in Lipid Research, 2006, 45, 250-278.	11.6	647
5	Phospholipase Dα1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure in <i>Arabidopsis</i> AÂÂ. Plant Cell, 2009, 21, 2357-2377.	6.6	517
6	Grape Exosome-like Nanoparticles Induce Intestinal Stem Cells and Protect Mice From DSS-Induced Colitis. Molecular Therapy, 2013, 21, 1345-1357.	8.2	495
7	Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic,. Journal of Lipid Research, 2007, 48, 837-847.	4.2	397
8	Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950–Metabolites in Frozen Human Plasma. Journal of Lipid Research, 2017, 58, 2275-2288.	4.2	312
9	The plasma membrane–bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nature Biotechnology, 2004, 22, 427-433.	17.5	310
10	Acyl-Lipid Metabolism. The Arabidopsis Book, 2010, 8, e0133.	0.5	287
11	Biosynthesis of Very-Long-Chain Polyunsaturated Fatty Acids in Transgenic Oilseeds: Constraints on Their Accumulationw \hat{a}_f ž. Plant Cell, 2004, 16, 2734-2748.	6.6	284
12	Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE DÎ ± 1 knockout mutant. Phytochemistry, 2006, 67, 1907-1924.	2.9	270
13	Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry, 2008, 69, 1773-1781.	2.9	262
14	Involvement of Phospholipase D in Wound-Induced Accumulation of Jasmonic Acid in Arabidopsis. Plant Cell, 2000, 12, 2237-2246.	6.6	260
15	The Oleate-Stimulated Phospholipase D, PLDÂ, and Phosphatidic Acid Decrease H2O2-Induced Cell Death in Arabidopsis. Plant Cell, 2003, 15, 2285-2295.	6.6	251
16	Quantitative Profiling of Arabidopsis Polar Glycerolipids in Response to Phosphorus Starvation. Roles of Phospholipases Dî¶1 and Dî¶2 in Phosphatidylcholine Hydrolysis and Digalactosyldiacylglycerol	4.8	226
	Accumulation in Phosphorus-Starved Plants. Plant Physiology, 2006, 142, 750-761.		
17	Accumulation in Phosphorus-Starved Plants. Plant Physiology, 2006, 142, 750-761. Overexpression of <i>Arabidopsis</i> Acyl-CoA Binding Protein ACBP3 Promotes Starvation-Induced and Age-Dependent Leaf Senescence Â. Plant Cell, 2010, 22, 1463-1482.	6.6	225

#	Article	IF	Citations
19	Wounding Stimulates the Accumulation of Glycerolipids Containing Oxophytodienoic Acid and Dinor-Oxophytodienoic Acid in Arabidopsis Leaves. Plant Physiology, 2006, 142, 28-39.	4.8	202
20	Metabolic labeling and direct imaging of choline phospholipids in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15332-15337.	7.1	202
21	Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Current Opinion in Plant Biology, 2004, 7, 337-344.	7.1	197
22	Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Plant, Cell and Environment, 2016, 39, 787-803.	5.7	197
23	Double Knockouts of Phospholipases Dζ1 and Dζ2 in Arabidopsis Affect Root Elongation during Phosphate-Limited Growth But Do Not Affect Root Hair Patterning. Plant Physiology, 2006, 140, 761-770.	4.8	193
24	The Arabidopsis thaliana Dihydroxyacetone Phosphate Reductase Gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 Is Required for Glycerolipid Metabolism and for the Activation of Systemic Acquired Resistance[W]. Plant Cell, 2004, 16, 465-477.	6.6	175
25	Identification of Plasma Lipid Biomarkers for Prostate Cancer by Lipidomics and Bioinformatics. PLoS ONE, 2012, 7, e48889.	2.5	169
26	Phospholipase Dα3 Is Involved in the Hyperosmotic Response in <i>Arabidopsis</i> Plant Cell, 2008, 20, 803-816.	6.6	162
27	Phospholipase Dε and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant Journal, 2009, 58, 376-387.	5.7	160
28	Phytochemical phenolics in organically grown vegetables. Molecular Nutrition and Food Research, 2005, 49, 1136-1142.	3.3	157
29	ABCA3 inactivation in mice causes respiratory failure, loss of pulmonary surfactant, and depletion of lung phosphatidylglycerol. Journal of Lipid Research, 2007, 48, 621-632.	4.2	150
30	Nonspecific Phospholipase C NPC4 Promotes Responses to Abscisic Acid and Tolerance to Hyperosmotic Stress in <i>Arabidopsis</i> Â. Plant Cell, 2010, 22, 2642-2659.	6.6	150
31	Plastid ω3â€fatty acid desaturaseâ€dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of <i>Arabidopsis thaliana</i> is independent of jasmonic acid. Plant Journal, 2008, 54, 106-117.	5.7	148
32	Profiling lipid changes in plant response to low temperatures. Physiologia Plantarum, 2006, 126, 90-96.	5.2	147
33	Plant lipidomics: Discerning biological function by profiling plant complex lipids using mass spectrometry. Frontiers in Bioscience - Landmark, 2007, 12, 2494.	3.0	140
34	Differential Degradation of Extraplastidic and Plastidic Lipids during Freezing and Post-freezing Recovery in Arabidopsis thaliana. Journal of Biological Chemistry, 2008, 283, 461-468.	3.4	139
35	Electrospray ionization tandem mass spectrometry scan modes for plant chloroplast lipids. Analytical Biochemistry, 2003, 314, 149-152.	2.4	126
36	AtPLAI Is an Acyl Hydrolase Involved in Basal Jasmonic Acid Production and Arabidopsis Resistance to Botrytis cinerea. Journal of Biological Chemistry, 2007, 282, 18116-18128.	3.4	123

#	Article	IF	Citations
37	Tocopherols Modulate Extraplastidic Polyunsaturated Fatty Acid Metabolism in <i>Arabidopsis</i> Low Temperature. Plant Cell, 2008, 20, 452-470.	6.6	115
38	Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant Journal, 2007, 50, 950-957.	5.7	109
39	Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. Microbiology (United Kingdom), 2011, 157, 3232-3242.	1.8	101
40	Arabidopsis phospholipase $\hat{Dl^2}$ 1 modulates defense responses to bacterial and fungal pathogens. New Phytologist, 2013, 199, 228-240.	7.3	100
41	Connections between Sphingosine Kinase and Phospholipase D in the Abscisic Acid Signaling Pathway in Arabidopsis. Journal of Biological Chemistry, 2012, 287, 8286-8296.	3.4	99
42	Arabidopsis sfd Mutants Affect Plastidic Lipid Composition and Suppress Dwarfing, Cell Death, and the Enhanced Disease Resistance Phenotypes Resulting from the Deficiency of a Fatty Acid Desaturase. Plant Cell, 2003, 15, 2383-2398.	6.6	96
43	Patatin-Related Phospholipase pPLAIIIβ-Induced Changes in Lipid Metabolism Alter Cellulose Content and Cell Elongation in <i>Arabidopsis</i>	6.6	94
44	PlantMetabolomics.org: A Web Portal for Plant Metabolomics Experiments. Plant Physiology, 2010, 152, 1807-1816.	4.8	93
45	Partition of amphiphilic molecules into phospholipid vesicles and human erythrocyte ghosts: measurements by ultraviolet difference spectroscopy. Biochemistry, 1984, 23, 6086-6091.	2.5	92
46	Lipid changes after leaf wounding in <i>Arabidopsis thaliana</i> : expanded lipidomic data form the basis for lipid coâ€occurrence analysis. Plant Journal, 2014, 80, 728-743.	5.7	90
47	ABCA12 Maintains the Epidermal Lipid Permeability Barrier by Facilitating Formation of Ceramide Linoleic Esters. Journal of Biological Chemistry, 2008, 283, 36624-36635.	3.4	89
48	Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of "Unknown Function― Frontiers in Plant Science, 2012, 3, 15.	3.6	82
49	Direct Infusion Mass Spectrometry of Oxylipin-Containing Arabidopsis Membrane Lipids Reveals Varied Patterns in Different Stress Responses Â. Plant Physiology, 2012, 158, 324-339.	4.8	81
50	Alterations in wheat pollen lipidome during high day and night temperature stress. Plant, Cell and Environment, 2018, 41, 1749-1761.	5.7	72
51	Identification and quantification of glycerolipids in cotton fibers: Reconciliation with metabolic pathway predictions from DNA databases. Lipids, 2005, 40, 773-785.	1.7	71
52	Lipidomic Analysis of <i>Toxoplasma gondii</i> Reveals Unusual Polar Lipids. Biochemistry, 2007, 46, 13882-13890.	2.5	70
53	The Patatin-Containing Phospholipase A pPLAIIÎ \pm Modulates Oxylipin Formation and Water Loss in Arabidopsis thaliana. Molecular Plant, 2012, 5, 452-460.	8.3	68
54	The Identification of Monoâ€, Diâ€, Triâ€, and Tetragalactosylâ€diacylglycerols and their Natural Estolides in Oat Kernels. Lipids, 2008, 43, 533-548.	1.7	67

#	Article	IF	CITATIONS
55	Wheat leaf lipids during heat stress: II. Lipids experiencing coordinated metabolism are detected by analysis of lipid coâ€occurrence. Plant, Cell and Environment, 2016, 39, 608-617.	5.7	67
56	In vivo substrates and the contribution of the common phospholipase D, $PLDl_{\pm}$, to wound-induced metabolism of lipids in Arabidopsis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1530, 236-248.	2.4	63
57	Quantitative profiling and pattern analysis of triacylglycerol species in Arabidopsis seeds by electrospray ionization mass spectrometry. Plant Journal, 2014, 77, 160-172.	5.7	59
58	Patterns of Metabolite Changes Identified from Large-Scale Gene Perturbations in Arabidopsis Using a Genome-Scale Metabolic Network Â. Plant Physiology, 2015, 167, 1685-1698.	4.8	55
59	Membrane Lipid Composition and Heat Tolerance in Cool-season Turfgrasses, including a Hybrid Bluegrass. Journal of the American Society for Horticultural Science, 2009, 134, 511-520.	1.0	55
60	Phospholipid and triacylglycerol profiles modified by $\langle i \rangle$ PLD $\langle i \rangle$ suppression in soybean seed. Plant Biotechnology Journal, 2011, 9, 359-372.	8.3	54
61	Patatin-Related Phospholipase pPLAIIIδ Increases Seed Oil Content with Long-Chain Fatty Acids in Arabidopsis Â. Plant Physiology, 2013, 162, 39-51.	4.8	52
62	An efficient modified method for plant leaf lipid extraction results in improved recovery of phosphatidic acid. Plant Methods, 2018, 14, 14.	4.3	51
63	LipidomeDB Data Calculation Environment: Online Processing of Directâ€Infusion Mass Spectral Data for Lipid Profiles. Lipids, 2011, 46, 879-884.	1.7	49
64	Enhanced seed viability and lipid compositional changes during natural ageing by suppressing phospholipase Dα in soybean seed. Plant Biotechnology Journal, 2012, 10, 164-173.	8.3	49
65	Electrospray ionization multiple stage quadrupole ion-trap and tandem quadrupole mass spectrometric studies on phosphatidylglycerol from arabidopsis leaves. Journal of the American Society for Mass Spectrometry, 2007, 18, 783-790.	2.8	47
66	Partition of parinaroyl phospholipid probes between solid and fluid phosphatidylcholine phases. Biochemistry, 1982, 21, 5685-5689.	2.5	46
67	Phospholipidome of <i>Candida</i> : Each Species of <i>Candida</i> : Has Distinctive Phospholipid Molecular Species. OMICS A Journal of Integrative Biology, 2010, 14, 665-677.	2.0	46
68	Levels of Arabidopsis thaliana Leaf Phosphatidic Acids, Phosphatidylserines, and Most Trienoate-Containing Polar Lipid Molecular Species Increase during the Dark Period of the Diurnal Cycle. Frontiers in Plant Science, 2012, 3, 49.	3 . 6	46
69	Suppression of Phospholipase $D\hat{l}^3$ s Confers Increased Aluminum Resistance in Arabidopsis thaliana. PLoS ONE, 2011, 6, e28086.	2.5	45
70	Networking of phospholipases in plant signal transduction. Physiologia Plantarum, 2002, 115, 331-335.	5.2	43
71	Overexpression of Sinapine Esterase BnSCE3 in Oilseed Rape Seeds Triggers Global Changes in Seed Metabolism Â. Plant Physiology, 2011, 155, 1127-1145.	4.8	42
72	Steryl Glucoside and Acyl Steryl Glucoside Analysis of Arabidopsis Seeds by Electrospray Ionization Tandem Mass Spectrometry. Lipids, 2012, 47, 185-193.	1.7	39

#	Article	IF	CITATIONS
73	Differential changes in galactolipid and phospholipid species in soybean leaves and roots under nitrogen deficiency and after nodulation. Phytochemistry, 2013, 96, 81-91.	2.9	37
74	Lipidomic Analysis of Plant Membrane Lipids by Direct Infusion Tandem Mass Spectrometry. Methods in Molecular Biology, 2013, 1009, 79-91.	0.9	37
75	Bioorthogonal Probes for Imaging Sterols in Cells. ChemBioChem, 2015, 16, 611-617.	2.6	36
76	Leaf Lipid Alterations in Response to Heat Stress of Arabidopsis thaliana. Plants, 2020, 9, 845.	3.5	36
77	Biosynthetic Labeling and Twoâ€Color Imaging of Phospholipids in Cells. ChemBioChem, 2015, 16, 472-476.	2.6	35
78	Comparative Transcriptome and Lipidome Analyses Reveal Molecular Chilling Responses in Chillingâ€∓olerant Sorghums. Plant Genome, 2017, 10, plantgenome2017.03.0025.	2.8	35
79	Lipid Profiling Reveals Tissueâ€Specific Differences for Ethanolamide Lipids in Mice Lacking Fatty Acid Amide Hydrolase. Lipids, 2010, 45, 863-875.	1.7	34
80	Channeling of Eukaryotic Diacylglycerol into the Biosynthesis of Plastidial Phosphatidylglycerol. Journal of Biological Chemistry, 2007, 282, 4613-4625.	3.4	33
81	Analysis of Common and Specific Mechanisms of Liver Function Affected by Nitrotoluene Compounds. PLoS ONE, 2011, 6, e14662.	2.5	33
82	A Comparative Study of Lipid Compositions of Cryptosporidium parvum (Apicomplexa) and Madin-Darby Bovine Kidney Cells. Journal of Eukaryotic Microbiology, 1994, 41, 8-12.	1.7	31
83	New Mass-Spectrometry-Based Strategies For Lipids. , 2007, 28, 129-157.		31
84	<i>ALOX12</i> in Human Toxoplasmosis. Infection and Immunity, 2014, 82, 2670-2679.	2.2	28
85	Comparative Lipidomic Analysis Reveals Heat Stress Responses of Two Soybean Genotypes Differing in Temperature Sensitivity. Plants, 2020, 9, 457.	3.5	28
86	Subcellular localization and dynamics of a digalactolipid-like epitope in Toxoplasma gondii. Journal of Lipid Research, 2008, 49, 746-762.	4.2	27
87	HIV infection induces structural and functional changes in high density lipoproteins. Atherosclerosis, 2015, 243, 19-29.	0.8	27
88	Lipids in xylem sap of woody plants across the angiosperm phylogeny. Plant Journal, 2021, 105, 1477-1494.	5.7	27
89	Polar Lipids from Oat Kernels. Cereal Chemistry, 2010, 87, 467-474.	2.2	26
90	Lipidomic analysis of N-acylphosphatidylethanolamine molecular species in Arabidopsis suggests feedback regulation by N-acylethanolamines. Planta, 2012, 236, 809-824.	3.2	26

#	Article	IF	CITATIONS
91	Rapid Mobilization of Membrane Lipids in Wheat Leaf Sheaths During Incompatible Interactions with Hessian Fly. Molecular Plant-Microbe Interactions, 2012, 25, 920-930.	2.6	25
92	Rapid characterization of the fatty acyl composition of complex lipids by collision-induced dissociation time-of-flight mass spectrometry. Journal of Lipid Research, 2007, 48, 235-241.	4.2	23
93	Lipid and oxylipin profiles during aging and sprout development in potato tubers (Solanum tuberosum) Tj ETQq1 🛚	l 0.784314 2.4	4 rgBT /Ove
94	Involvement of Phospholipase D in Wound-Induced Accumulation of Jasmonic Acid in Arabidopsis. Plant Cell, 2000, 12, 2237.	6.6	21
95	Heat stress elicits remodeling in the anther lipidome of peanut. Scientific Reports, 2020, 10, 22163.	3.3	21
96	Potato tuber phospholipids contain colneleic acid in the 2-position. FEBS Letters, 2003, 538, 155-158.	2.8	20
97	Modifications of membrane lipids in response to wounding of <i>Arabidopsis thaliana</i> leaves. Plant Signaling and Behavior, 2015, 10, e1056422.	2.4	20
98	Partition of parinaroyl phospholipids in mixed head group systems. Biochemistry, 1982, 21, 5690-5693.	2.5	19
99	Thermotropic behavior of mixtures of glycosphingolipids and phosphatidylcholine: effect of monovalent cations on sulfatide and galactosylceramide. Biochemistry, 1989, 28, 26-31.	2.5	19
100	Weight Loss via Exercise with Controlled Dietary Intake May Affect Phospholipid Profile for Cancer Prevention in Murine Skin Tissues. Cancer Prevention Research, 2010, 3, 466-477.	1.5	19
101	Biochemical and Molecular-Genetic Characterization of SFD1's Involvement in Lipid Metabolism and Defense Signaling. Frontiers in Plant Science, 2012, 3, 26.	3.6	19
102	Characteristics and origin of intact polar lipids in soil organic matter. Soil Biology and Biochemistry, 2020, 151, 108045.	8.8	19
103	Headâ€group acylation of monogalactosyldiacylglycerol is a common stress response, and the acylâ€galactose acyl composition varies with the plant species and applied stress. Physiologia Plantarum, 2014, 150, 517-528.	5.2	18
104	The effect of phospholipase $\hat{Dl\pm 3}$ in Arabidopsis response to hyperosmotic stress and glucose. Plant Signaling and Behavior, 2008, 3, 1099-1100.	2.4	17
105	Intestinal lipid alterations occur prior to antibody-induced prostaglandin E2 production in a mouse model of ischemia/reperfusion. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 517-525.	2.4	15
106	Arabidopsis thaliana Membrane Lipid Molecular Species and Their Mass Spectral Analysis. Methods in Molecular Biology, 2012, 918, 179-268.	0.9	15
107	General kinetic model for protein-mediated phospholipid transfer between membranes. Archives of Biochemistry and Biophysics, 1988, 266, 299-312.	3.0	12
108	Membrane penetration depth and lipid phase preference of acyl-labeled dansyl phosphatidylcholines in phosphatidylcholine vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1328, 48-54.	2.6	12

#	Article	IF	CITATIONS
109	Lipid Profiles in Wheat Cultivars Resistant and Susceptible to Tan Spot and the Effect of Disease on the Profiles. Phytopathology, 2013, 103, 74-80.	2.2	11
110	Synthesis and characterization of N-parinaroyl analogs of ganglioside GM3 and de-N-acetyl GM3. Interactions with the EGF receptor kinase. Biochemistry, 1993, 32, 8602-8607.	2.5	10
111	A Lipidomic Approach to Identify Cold-Induced Changes in Arabidopsis Membrane Lipid Composition. Methods in Molecular Biology, 2014, 1166, 199-215.	0.9	9
112	Partition of parinaroylphosphatidylethanolamines and parinaroylphosphatidylglycerols in immiscible phospholipid mixtures. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1023, 383-388.	2.6	8
113	Lipid arrangement in fluid model membranes: Analysis by cross-linking of phosphatidylethanolamines. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1063, 242-246.	2.6	8
114	TLR9 is dispensable for intestinal ischemia/reperfusion-induced tissue damage. American Journal of Clinical and Experimental Immunology, 2012, 1, 124-135.	0.2	7
115	Endogenous \hat{l}^2 -glucocerebrosidase activity in Abca12epidermis elevates ceramide levels after topical lipid application but does not restore barrier function. Journal of Lipid Research, 2014, 55, 493-503.	4.2	6
116	LipidomeDB Data Calculation Environment Has Been Updated to Process Directâ€Infusion Multiple Reaction Monitoring Data. Lipids, 2018, 53, 1019-1020.	1.7	6
117	The tail of chlorophyll: Fates for phytol. Journal of Biological Chemistry, 2021, 296, 100802.	3.4	6
118	Changes in N-acylethanolamine Pathway Related Metabolites in a Rat Model of Cerebral Ischemia/Reperfusion. Journal of Glycomics & Lipidomics, 2011, 1, .	0.4	6
119	Cross-linking of phosphatidylethanolamine neighbors with dimethylsuberimidate is sensitive to the lipid phase. Biochimica Et Biophysica Acta - Biomembranes, 1989, 986, 217-224.	2.6	5
120	Arrangement of phosphatidylethanolamine molecular species in Escherichia coli membranes and reconstituted lipids as determined by dimethyl suberimidate cross-linking of nearest neighbor lipids. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1190, 91-98.	2.6	5
121	Lipidomic Analysis of Arabidopsis T-DNA Insertion Lines Leads to Identification and Characterization of C-Terminal Alterations in FATTY ACID DESATURASE 6. Plant and Cell Physiology, 2022, 63, 1193-1204.	3.1	5
122	Analysis of dimeric species derived from the reaction of phosphatidylethanolamine with dimethylsuberimidate. Chemistry and Physics of Lipids, 1989, 51, 39-46.	3.2	4
123	Phase behavior and arrangement of molecular species in mixtures of a mixed chain and a symmetric phosphatidylethanolamine in the gel and fluid phases. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1149, 292-298.	2.6	4
124	Omega-3 Fatty Acid Supplementation Affects Selected Phospholipids in Peripheral White Blood Cells and in Plasma of Full-Sized and Miniature Mares. Journal of Equine Veterinary Science, 2013, 33, 779-786.	0.9	3
125	Introducing the USA Plant, Algae and Microbial Metabolomics Research Coordination Network (PAMM-NET). Metabolomics, 2015, 11, 3-5.	3.0	3
126	Head-Group Acylation of Chloroplast Membrane Lipids. Molecules, 2021, 26, 1273.	3.8	3

#	Article	lF	CITATIONS
127	Nanoparticles are linked to polar lipids in xylem sap of temperate angiosperm species. Tree Physiology, 2022, , .	3.1	3
128	Lipidomics: ESI-MS/MS-Based Profiling to Determine the Function of Genes Involved in Metabolism of Complex Lipids. , 2007, , 87-92.		2
129	A Lipidomic Approach to Identify Cold-Induced Changes in Arabidopsis Membrane Lipid Composition. Methods in Molecular Biology, 2020, 2156, 187-202.	0.9	2
130	High-Throughput Lipid Profiling to Identify and Characterize Genes Involved in Lipid Metabolism, Signaling, and Stress Response., 2005,, 307-322.		1
131	Specific Changes in Arabidopsis thaliana Rosette Lipids during Freezing Can Be Associated with Freezing Tolerance. Metabolites, 2022, 12, 385.	2.9	1
132	A Water Extract from Chlorella sorokiniana Cell Walls Stimulates Growth of Bone Marrow Cells and Splenocytes. Nutrients, 2022, 14, 2901.	4.1	1
133	Fatty Acid Composition by Total Acyl Lipid Collision-Induced Dissociation Time-of-Flight (TAL-CID-TOF) Mass. Methods in Molecular Biology, 2021, 2295, 117-133.	0.9	0
134	Two Novel Types of Arabidopsis Phospholipase D. , 2003, , 259-262.		0