
Roberto Bruzzone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9275408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High neutralizing potency of swine glycoâ€humanized polyclonal antibodies against SARSâ€CoVâ€2. European Journal of Immunology, 2021, 51, 1412-1422.	1.6	21
2	XAV-19, a Swine Glyco-Humanized Polyclonal Antibody Against SARS-CoV-2 Spike Receptor-Binding Domain, Targets Multiple Epitopes and Broadly Neutralizes Variants. Frontiers in Immunology, 2021, 12, 761250.	2.2	7
3	Connexin hemichannel inhibition improves skin pathology in Clouston syndrome mice. EBioMedicine, 2020, 57, 102856.	2.7	1
4	Lyn kinase regulates egress of flaviviruses in autophagosome-derived organelles. Nature Communications, 2020, 11, 5189.	5.8	24
5	Global outbreak research: harmony not hegemony. Lancet Infectious Diseases, The, 2020, 20, 770-772.	4.6	40
6	Breaking Bad: How Viruses Subvert the Cell Cycle. Frontiers in Cellular and Infection Microbiology, 2018, 8, 396.	1.8	110
7	Cell Cycle-independent Role of Cyclin D3 in Host Restriction of Influenza Virus Infection. Journal of Biological Chemistry, 2017, 292, 5070-5088.	1.6	37
8	CLEC5A-Mediated Enhancement of the Inflammatory Response in Myeloid Cells Contributes to Influenza Virus Pathogenicity <i>In Vivo</i> . Journal of Virology, 2017, 91, .	1.5	41
9	Antiviral Properties of Chemical Inhibitors of Cellular Anti-Apoptotic Bcl-2 Proteins. Viruses, 2017, 9, 271.	1.5	39
10	Usp12 stabilizes the T-cell receptor complex at the cell surface during signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E705-14.	3.3	41
11	Fc receptors in antibodyâ€dependent enhancement of viral infections. Immunological Reviews, 2015, 268, 340-364.	2.8	202
12	KDEL Receptors Assist Dengue Virus Exit from the Endoplasmic Reticulum. Cell Reports, 2015, 10, 1496-1507.	2.9	34
13	The Double Life of Connexin Channels: Single Is a Treat. Journal of Investigative Dermatology, 2015, 135, 940-943.	0.3	2
14	New tricks for KDEL receptors. Oncotarget, 2015, 6, 30425-30426.	0.8	4
15	Open source clinical science for emerging infections. Lancet Infectious Diseases, The, 2014, 14, 8-9.	4.6	82
16	Randomised controlled trials for Ebola: practical and ethical issues. Lancet, The, 2014, 384, 1423-1424.	6.3	144
17	Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virology Journal, 2014, 11, 82.	1.4	218
18	Class II ADP-ribosylation Factors Are Required for Efficient Secretion of Dengue Viruses. Journal of Biological Chemistry, 2012, 287, 767-777.	1.6	52

#	Article	IF	CITATIONS
19	A Single Residue Substitution in the Receptor-Binding Domain of H5N1 Hemagglutinin Is Critical for Packaging into Pseudotyped Lentiviral Particles. PLoS ONE, 2012, 7, e43596.	1.1	14
20	Ezrin Interacts with the SARS Coronavirus Spike Protein and Restrains Infection at the Entry Stage. PLoS ONE, 2012, 7, e49566.	1.1	46
21	Identification of cellular enhancing and restricting factors of dengue virus egress. BMC Proceedings, 2011, 5, .	1.8	0
22	The SARS coronavirus E protein interacts with the PALS1 and alters tight junction formation and epithelial morphogenesis. BMC Proceedings, 2011, 5, P79.	1.8	0
23	Investigation of Antibody-Dependent Enhancement (ADE) of SARS coronavirus infection and its role in pathogenesis of SARS. BMC Proceedings, 2011, 5, P80.	1.8	23
24	Anti-Severe Acute Respiratory Syndrome Coronavirus Spike Antibodies Trigger Infection of Human Immune Cells via a pH- and Cysteine Protease-Independent FcγR Pathway. Journal of Virology, 2011, 85, 10582-10597.	1.5	294
25	The SARS Coronavirus E Protein Interacts with PALS1 and Alters Tight Junction Formation and Epithelial Morphogenesis. Molecular Biology of the Cell, 2010, 21, 3838-3852.	0.9	191
26	In vivo evidence for the involvement of the carboxy terminal domain in assembling connexin 36 at the electrical synapse. Molecular and Cellular Neurosciences, 2010, 45, 47-58.	1.0	29
27	Neurobiology of infectious diseases: Bringing them out of neglect. Progress in Neurobiology, 2010, 91, 91-94.	2.8	3
28	Cleavage of the SARS Coronavirus Spike Glycoprotein by Airway Proteases Enhances Virus Entry into Human Bronchial Epithelial Cells In Vitro. PLoS ONE, 2009, 4, e7870.	1.1	142
29	Efficient Assembly and Secretion of Recombinant Subviral Particles of the Four Dengue Serotypes Using Native prM and E Proteins. PLoS ONE, 2009, 4, e8325.	1.1	64
30	Infectious Diseases of the Nervous System and Their Impact in Developing Countries. PLoS Pathogens, 2009, 5, e1000199.	2.1	19
31	High-throughput screening using pseudotyped lentiviral particles: A strategy for the identification of HIV-1 inhibitors in a cell-based assay. Antiviral Research, 2009, 81, 239-247.	1.9	30
32	H5-Type Influenza Virus Hemagglutinin Is Functionally Recognized by the Natural Killer-Activating Receptor NKp44. Journal of Virology, 2008, 82, 2028-2032.	1.5	71
33	The M, E, and N Structural Proteins of the Severe Acute Respiratory Syndrome Coronavirus Are Required for Efficient Assembly, Trafficking, and Release of Virus-Like Particles. Journal of Virology, 2008, 82, 11318-11330.	1.5	436
34	Infectious diseases of the nervous system: pathogenesis and worldwide impact. BMC Proceedings, 2008, 2, .	1.8	0
35	Tumor-Suppressive Effects of Pannexin 1 in C6 Glioma Cells. Cancer Research, 2007, 67, 1545-1554.	0.4	172
36	Cell-Cell Communication Beyond Connexins: The Pannexin Channels. Physiology, 2006, 21, 103-114.	1.6	226

#	Article	IF	CITATIONS
37	Structure and function of gap junctions in the developing brain. Cell and Tissue Research, 2006, 326, 239-248.	1.5	99
38	Selective defects in channel permeability associated with Cx32 mutations causing X-linked Charcot–Marie–Tooth disease. Neurobiology of Disease, 2006, 21, 607-617.	2.1	27
39	Pathogenetic role of the deafness-related M34T mutation of Cx26. Human Molecular Genetics, 2006, 15, 2569-2587.	1.4	71
40	Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. Journal of Neurochemistry, 2005, 92, 1033-1043.	2.1	433
41	Hearing the messenger: Ins(1,4,5)P3 and deafness. Nature Cell Biology, 2005, 7, 14-16.	4.6	15
42	Connexins, innexins and pannexins: Bridging the communication gap. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1719, 3-5.	1.4	34
43	Molecular Cloning and Functional Expression of zfCx52.6. Journal of Biological Chemistry, 2004, 279, 2913-2921.	1.6	48
44	Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Human Molecular Genetics, 2004, 13, 1703-1714.	1.4	137
45	Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1662, 113-137.	1.4	253
46	Modulation of perch connexin35 hemi-channels by cyclic AMP requires a protein kinase A phosphorylation site. Journal of Neuroscience Research, 2003, 72, 147-157.	1.3	51
47	Connexin-dependent inter-cellular communication increases invasion and dissemination of Shigella in epithelial cells. Nature Cell Biology, 2003, 5, 720-726.	4.6	159
48	Loss-of-function and residual channel activity of connexin26 mutations associated with non-syndromic deafness. FEBS Letters, 2003, 533, 79-88.	1.3	142
49	Pannexins, a family of gap junction proteins expressed in brain. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13644-13649.	3.3	699
50	Virtual cloning, functional expression, and gating analysis of human connexin31.9. American Journal of Physiology - Cell Physiology, 2002, 283, C960-C970.	2.1	79
51	Hearing loss: frequency and functional studies of the most common connexin26 alleles. Biochemical and Biophysical Research Communications, 2002, 296, 685-691.	1.0	89
52	Cell coupling and Cx43 expression in embryonic mouse neural progenitor cells. Journal of Cell Science, 2002, 115, 3241-3251.	1.2	95
53	Cell coupling and Cx43 expression in embryonic mouse neural progenitor cells. Journal of Cell Science, 2002, 115, 3241-51.	1.2	84
54	Functional Analysis of a Dominant Mutation of Human Connexin26 Associated with Nonsyndromic Deafness. Cell Communication and Adhesion, 2001, 8, 425-431.	1.0	24

#	Article	IF	CITATIONS
55	Altered gene expression in Schwann cells of connexin32 knockout animals. Journal of Neuroscience Research, 2001, 66, 23-36.	1.3	22
56	First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nature Genetics, 2001, 28, 46-48.	9.4	701
57	Identification and Functional Expression of HCx31.9, a Novel Gap Junction Gene. Cell Communication and Adhesion, 2001, 8, 173-178.	1.0	16
58	Title is missing!. Nature Genetics, 2001, 28, 46-48.	9.4	241
59	Functional properties, developmental regulation, and chromosomal localization of murine connexin36, a gap-junctional protein expressed preferentially in retina and brain. Journal of Neuroscience Research, 2000, 59, 813-826.	1.3	101
60	Gap junctions: Fates worse than death?. Current Biology, 2000, 10, R685-R688.	1.8	15
61	Molecular and Functional Diversity of Neural Connexins in the Retina. Journal of Neuroscience, 2000, 20, 8331-8343.	1.7	84
62	Voltage gating properties of channels formed by a skate retinal connexin. Biological Bulletin, 2000, 199, 165-168.	0.7	5
63	Intercellular communication in the eye: clarifying the need for connexin diversity. Brain Research Reviews, 2000, 32, 130-137.	9.1	38
64	Connexin channels in Schwann cells and the development of the X-linked form of Charcot-Marie-Tooth disease. Brain Research Reviews, 2000, 32, 192-202.	9.1	61
65	Functional characteristics of skate connexin35, a member of the Î ³ subfamily of connexins expressed in the vertebrate retina. European Journal of Neuroscience, 1999, 11, 1883-1890.	1.2	78
66	Connexin32 in the Peripheral Nervous System: Functional Analysis of Mutations Associated with X-linked Charcot-Marie-Tooth Syndrome and Implications for the Pathophysiology of the Disease. Annals of the New York Academy of Sciences, 1999, 883, 168-185.	1.8	9
67	Induction of Myelin Gene Expression in Murine Schwann Cells in Primary Culture and in a Schwann Cell Line. Annals of the New York Academy of Sciences, 1999, 883, 513-517.	1.8	1
68	Connexins and Information Transfer Through Glia. Advances in Experimental Medicine and Biology, 1999, 468, 321-337.	0.8	29
69	Connexin 26 gene linked to a dominant deafness. Nature, 1998, 393, 319-320.	13.7	291
70	Connexin32 Mutations Associated with X-Linked Charcot–Marie–Tooth Disease Show Two Distinct Behaviors: Loss of Function and Altered Gating Properties. Journal of Neuroscience, 1998, 18, 4063-4075.	1.7	99
71	Cloning and Expression of Two Related Connexins from the Perch Retina Define a Distinct Subgroup of the Connexin Family. Journal of Neuroscience, 1998, 18, 7625-7637.	1.7	140
72	Connexins, Gap Junctions and Cell-Cell Signalling in the Nervous System. European Journal of Neuroscience, 1997, 9, 1-6.	1.2	86

#	Article	IF	CITATIONS
73	Gap junctions: Getting the message through. Current Biology, 1997, 7, R340-R344.	1.8	71
74	Multiple connexin proteins in single intercellular channels: Connexin compatibility and functional consequences. Journal of Bioenergetics and Biomembranes, 1996, 28, 339-350.	1.0	187
75	Connections with Connexins: the Molecular Basis of Direct Intercellular Signaling. FEBS Journal, 1996, 238, 1-27.	0.2	1,190
76	The cellular internet: On-line with connexins. BioEssays, 1996, 18, 709-718.	1.2	178
77	DOMINANT INHIBITION OF INTERCELLULAR COMMUNICATION BY TWO CHIMERIC CONNEXINS. Clinical and Experimental Pharmacology and Physiology, 1996, 23, 1062-1067.	0.9	6
78	Connections with connexins: the molecular basis of direct intercellular signaling. , 1996, , 135-161.		18
79	Gap junctions: Ductin or connexins - which component is the critical one?. BioEssays, 1995, 17, 744-744.	1.2	10
80	The connexin family of intercellular channel forming proteins. Kidney International, 1995, 48, 1148-1157.	2.6	106
81	Intercellular channels in teleosts: functional characterization of two connexins from Atlantic croaker. FEBS Letters, 1995, 358, 301-304.	1.3	18
82	Chimeric connexins reveal the molecular basis for novel properties of lens intercellular channels reconstituted in paired Xenopus oocytes. Progress in Cell Research, 1995, , 387-390.	0.3	1
83	Selective interactions among the multiple connexin proteins expressed in the vertebrate lens: the second extracellular domain is a determinant of compatibility between connexins Journal of Cell Biology, 1994, 125, 879-892.	2.3	261
84	Voltage gating of connexins. Nature, 1994, 371, 208-209.	13.7	56
85	Null mutations of connexin32 in patients with X-linked Charcot-Marie-Tooth disease. Neuron, 1994, 13, 1253-1260.	3.8	196
86	The molecular basis of enzyme secretion. Gastroenterology, 1990, 99, 1157-1176.	0.6	43
87	Mechanism of action of bombesin on amylase secretion. Evidence for a Ca2+-independent pathway. FEBS Journal, 1989, 179, 323-331.	0.2	12
88	Effects of n-alcohols on junctional coupling and amylase secretion of pancreatic acinar cells. Journal of Cellular Physiology, 1989, 139, 147-156.	2.0	54
89	Increase in pancreatic exocrine secretion during uncoupling: Evidence for a protein kinase C-independent effect. Experimental Cell Research, 1989, 182, 349-357.	1.2	9
90	Measurement of cytosolic free Ca2+in individual pancreatic acini. FEBS Letters, 1988, 242, 79-84.	1.3	48

#	Article	IF	CITATIONS
91	The gap junction: a channel for multiple functions?. European Journal of Clinical Investigation, 1988, 18, 444-453.	1.7	42
92	Regulation of Pancreatic Exocrine Function. Pancreas, 1987, 2, 262-271.	0.5	22
93	Gap junctional coupling modulates secretion of exocrine pancreas Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 4901-4904.	3.3	67
94	Secretin stimulates cyclic AMP and inositol trisphosphate production in rat pancreatic acinar tissue by two fully independent mechanisms Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 3146-3150.	3.3	78
95	Abnormalities of pancreatic exocrine function in obesity: Studies in the obese mouse. Comparative Biochemistry and Physiology A, Comparative Physiology, 1986, 83, 387-390.	0.7	8
96	Blockage of cell-to-cell communication within pancreatic acini is associated with increased basal release of amylase Journal of Cell Biology, 1986, 103, 475-483.	2.3	82
97	Activity of the Insulo-Acinar Axis in the Isolated Perfused Rat Pancreas*. Endocrinology, 1985, 117, 1246-1252.	1.4	33
98	Abnormalities of caerulein- and carbamylcholine-stimulated pancreatic enzyme secretion in the obese Zucker rat. Regulatory Peptides, 1985, 11, 227-235.	1.9	5
99	Bombesin effects on human GI functions. Peptides, 1985, 6, 113-116.	1.2	39
100	Glucose-insulin interactions on exocrine secretion from the perfused rat pancreas. Gastroenterology, 1984, 87, 1305-1312.	0.6	17
101	Effects of bombesin on gastrin and gastric acid secretion in patients with duodenal ulcer. Gut, 1983, 24, 231-235.	6.1	38
102	Effect of Bombesin on Plasma Insulin, Pancreatic Glucagon, and Gut Glucagon in Man*. Journal of Clinical Endocrinology and Metabolism, 1983, 56, 643-647.	1.8	56
103	NEUROTENSIN AND THE DUMPING SYNDROME. Lancet, The, 1981, 317, 1209.	6.3	2