Taehwan Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9274710/publications.pdf

Version: 2024-02-01

41 1,187 20 34 papers citations h-index g-index

41 41 41 863 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Modeling blended cement concrete tensile creep for standard ring test application. Structural Concrete, 2023, 24, 2170-2188.	1.5	2
2	Chemoâ€mechanical properties of carbon fiber reinforced geopolymer interphase. Journal of the American Ceramic Society, 2022, 105, 1519-1532.	1.9	6
3	Autogenous and total shrinkage of limestone calcined clay cement (LC3) concretes. Construction and Building Materials, 2022, 314, 125720.	3.2	42
4	Synthesis of chemically controlled cementitious materials using organic steric entrapment (OSE) method: Process, advantages, and characterisation. Cement and Concrete Research, 2022, 153, 106698.	4.6	4
5	Effect of limestone in General Purpose cement on autogenous shrinkage of high strength GGBFS concrete and pastes. Construction and Building Materials, 2022, 327, 126949.	3.2	22
6	Durability performance of binary and ternary blended cementitious systems with calcined clay: a RILEM TC 282-CCL, review. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	1.3	9
7	The efficiency of recycled glass powder in mitigating the alkali-silica reaction induced by recycled glass aggregate in cementitious mortars. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	1.3	8
8	Analytical model to parameterize the adiabatic temperature rise of concrete. Construction and Building Materials, 2021, 268, 121656.	3.2	6
9	Performance of fly ash concrete with ferronickel slag fine aggregate against alkali-silica reaction and chloride diffusion. Cement and Concrete Research, 2021, 139, 106265.	4.6	35
10	Sensor array for wireless remote monitoring of carbon dioxide and methane near carbon sequestration and oil recovery sites. RSC Advances, 2021, 11, 6972-6984.	1.7	13
11	Rheological Behaviour and Flow Properties of Alkali-Activated Materials. RILEM Bookseries, 2021, , 257-269.	0.2	0
12	Waste-derived activators for alkali-activated materials: A review. Cement and Concrete Composites, 2021, 118, 103980.	4.6	62
13	Distinctive rheological and temporal viscoelastic behaviour of alkali-activated fly ash/slag pastes: A comparative study with cement paste. Cement and Concrete Research, 2021, 144, 106441.	4.6	58
14	Analytical model predicting the concrete tensile stress development in the restrained shrinkage ring test. Construction and Building Materials, 2021, 307, 124930.	3.2	16
15	Effect of rice husk ash-derived activator on the structural build-up of alkali activated materials. Cement and Concrete Research, 2021, 150, 106590.	4.6	27
16	Effects of Air-Cooled Blast Furnace Slag Aggregate on Pore Solution Chemistry of Cementitious Systems. Journal of Materials in Civil Engineering, 2020, 32, 04019317.	1.3	0
17	Using particle composition of fly ash to predict concrete strength and electrical resistivity. Cement and Concrete Composites, 2020, 107, 103493.	4.6	23
18	Using the Particle Model to predict electrical resistivity performance of fly ash in concrete. Construction and Building Materials, 2020, 261, 119975.	3.2	21

#	Article	IF	Citations
19	Mitigation of alkali-silica reaction by limestone calcined clay cement (LC3). Cement and Concrete Research, 2020, 137, 106176.	4.6	47
20	Predicting the compressive strength of fly ash concrete with the Particle Model. Cement and Concrete Research, 2020, 137, 106218.	4.6	29
21	Mitigation of Alkali–Silica Reaction in Limestone Calcined Clay Cement-Based Mortar. RILEM Bookseries, 2020, , 665-672.	0.2	3
22	Initial sequence for alkali-silica reaction: Transport barrier and spatial distribution of reaction products. Cement and Concrete Composites, 2019, 104, 103378.	4.6	17
23	Evaluating Effect of GGBFS in Alkali–Silica Reaction in Geopolymer Mortar with Accelerated Mortar Bar Test. Journal of Materials in Civil Engineering, 2019, 31, 04019167.	1.3	19
24	Durability and Microstructure Properties of Low-Carbon Concrete Incorporating Ferronickel Slag Sand and Fly Ash. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	32
25	High strength/density ratio in a syntactic foam made from one-part mix geopolymer and cenospheres. Composites Part B: Engineering, 2019, 173, 106908.	5.9	53
26	Using Particle Characterization to Study Fly Ash Dissolution and Leaching in Water and KOH Solution. ACI Materials Journal, 2019, 116, .	0.3	1
27	Fly ash particle characterization for predicting concrete compressive strength. Construction and Building Materials, 2018, 165, 560-571.	3.2	46
28	The influence of air cooled blast furnace slag (ACBFS) aggregate on the concentration of sulfates in concrete's pore solution. Construction and Building Materials, 2018, 168, 394-403.	3.2	9
29	Dissolution and Leaching of Fly Ash in Nitric Acid Using Automated Scanning Electron Microscopy. Advances in Civil Engineering Materials, 2018, 7, 291-307.	0.2	3
30	Direct measurements of 3d structure, chemistry and mass density during the induction period of C3s hydration. Cement and Concrete Research, 2016, 89, 14-26.	4.6	44
31	Direct three-dimensional observation of the microstructure and chemistry of C3S hydration. Cement and Concrete Research, 2016, 88, 157-169.	4.6	54
32	The effects of lithium ions on chemical sequence of alkali-silica reaction. Cement and Concrete Research, 2016, 79, 159-168.	4.6	32
33	Physical and chemical characteristics of fly ash using automated scanning electron microscopy. Construction and Building Materials, 2016, 106, 1-10.	3.2	33
34	Alkali–silica reaction: Kinetics of chemistry of pore solution and calcium hydroxide content in cementitious system. Cement and Concrete Research, 2015, 71, 36-45.	4.6	70
35	Modeling of early age loss of lithium ions from pore solution of cementitious systems treated with lithium nitrate. Cement and Concrete Research, 2015, 67, 204-214.	4.6	7
36	Chemical Sequence and Kinetics of Alkali–Silica Reaction Part <scp>II</scp> . A Thermodynamic Model. Journal of the American Ceramic Society, 2014, 97, 2204-2212.	1.9	40

3

#	Article	IF	CITATIONS
37	Chemical Sequence and Kinetics of Alkaliâ€Silica Reaction Part I. Experiments. Journal of the American Ceramic Society, 2014, 97, 2195-2203.	1.9	49
38	Effects of Sample Preparation and Interpretation of Thermogravimetric Curves on Calcium Hydroxide in Hydrated Pastes and Mortars. Transportation Research Record, 2012, 2290, 10-18.	1.0	201
39	Long-term behaviour of square concrete-filled steel tubular columns under axial service loads. Magazine of Concrete Research, 2007, 59, 53-68.	0.9	32
40	Evolution of flow properties, plastic viscosity, and yield stress of alkali-activated fly ash/slag pastes. RILEM Technical Letters, 0, 5, 141-149.	0.0	11
41	Autogenous Shrinkage of Fly Ash and GGBFS Concrete. Magazine of Concrete Research, 0, , 1-31.	0.9	1