Margarita O Tonkushina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9274546/publications.pdf

Version: 2024-02-01

623188 794141 35 419 14 19 g-index citations h-index papers 35 35 35 132 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of nanocluster molybdenum-containing polyoxometalates and doxorubicin conjugates on normal and tumor cells. AIP Conference Proceedings, 2022, , .	0.3	O
2	Thermodynamics of the interaction between Keplerate-type polyoxometalate {Mo72Fe30} and vitamin B1. Thermochimica Acta, 2022, 711, 179201.	1.2	4
3	Physicochemical and biochemical properties of the Keplerate-type nanocluster polyoxomolybdates as promising components for biomedical use. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12, 81-112.	0.2	8
4	Comparison of toxic effects of iron-molybdenum polyoxometalates and mixture of their components. Toxicological Review, 2021, 29, 54-59.	0.2	0
5	The Impact of Iron–Molybdenum Polyoxometalates and a Mixture of Nanoparticle Components on the Content of Nucleic Acids and Histone Proteins in Rat Blood Lymphocytes. Nanotechnologies in Russia, 2020, 15, 191-197.	0.7	2
6	Coordinative interaction between nitrogen oxides and iron–molybdenum POM Mo ₇₂ Fe ₃₀ . Dalton Transactions, 2019, 48, 6984-6996.	1.6	11
7	Association of Spherical Porous Nanocluster Keplerate-Type Polyoxometalate Mo72Fe30 with Biologically Active Substances. Journal of Cluster Science, 2018, 29, 111-120.	1.7	18
8	Influence of Nanocluster Molybdenum Polyoxometalates on the Morphofunctional State of Fibroblasts in Culture. Nanotechnologies in Russia, 2018, 13, 1-10.	0.7	7
9	Stabilization of keplerate-type spheric porous nanocluster polyoxometalate Mo <inf>72</inf> Fe <inf>30</inf> ., 2018, , .		2
10	Features of thermophotoinitiated degradation of nanocluster polyoxomolybdate Mo132 and its polymer-containing composites. Russian Journal of Inorganic Chemistry, 2017, 62, 483-488.	0.3	6
11	Iontophoretic transport of associates based on porous Keplerate-type cluster polyoxometalate Mo72Fe30 and containing biologically active substances. Russian Journal of Physical Chemistry A, 2017, 91, 1811-1815.	0.1	11
12	Enthalpy of mixing of porous nanocluster polyoxometalates of keplerate-type Mo72Fe30 with polyvinyl alcohol and polyethylene glycol. Russian Journal of Physical Chemistry A, 2017, 91, 1076-1079.	0.1	6
13	Effect of polyoxomolybdate nanocluster doping on the dielectric characteristics of polyvinyl alcohol nanocomposite films. Russian Journal of Inorganic Chemistry, 2016, 61, 477-481.	0.3	6
14	Viscosity and Electrophysical Characteristics of Solutions Containing Nanocluster Polyoxometalates and Polyvinylpyrrolidone. Russian Journal of Physical Chemistry A, 2016, 90, 838-842.	0.1	1
15	Influence of iron-molybdenum nanocluster polyoxometalates on the apoptosis of blood leukocytes and the level of heat-shock proteins in the cells of thymus and spleen in rats. Nanotechnologies in Russia, 2016, 11, 653-662.	0.7	9
16	Destruction of porous spherical Mo132 nanocluster polyoxometallate of keplerate type in aqueous solutions. Russian Journal of Physical Chemistry A, 2016, 90, 436-442.	0.1	19
17	Behavior of associates of keplerate-type porous spherical Mo72Fe30 clusters with metal cations in electric field-driven ion transport. Russian Journal of Inorganic Chemistry, 2015, 60, 500-504.	0.3	16
18	Destruction of molybdenum nanocluster polyoxometallates in aqueous solutions. Russian Journal of Physical Chemistry A, 2015, 89, 443-446.	0.1	15

#	Article	IF	CITATIONS
19	Changing the content of histone proteins and heat-shock proteins in the blood and liver of rats after the single and repeated administration of nanocluster iron-molybdenum polyoxometalates. Nanotechnologies in Russia, 2015, 10, 820-826.	0.7	13
20	Thermochemical study of interaction between nanocluster polyoxomolybdates and polymers in film compositions. Russian Journal of Physical Chemistry A, 2014, 88, 295-300.	0.1	14
21	Interaction between Mo132 nanocluster polyoxometalate and solvents. Russian Journal of Physical Chemistry A, 2014, 88, 2179-2182.	0.1	10
22	Studies on the possibility of introducing iron-molybdenum buckyballs into an organism by electrophoresis. Nanotechnologies in Russia, 2014, 9, 577-582.	0.7	20
23	Study of acute and subacute action of iron-molybdenum nanocluster polyoxometalates. Nanotechnologies in Russia, 2013, 8, 672-677.	0.7	17
24	Stability of the Mo72Fe30 polyoxometalate buckyball in solution. Russian Journal of Inorganic Chemistry, 2012, 57, 1210-1213.	0.3	24
25	Study of the stability of solid polyoxometalate Mo72Fe30 with a buckyball structure. Russian Journal of Inorganic Chemistry, 2012, 57, 858-863.	0.3	17
26	Electrotransport, sorption, and photochemical properties of nanocluster polyoxomolybdates with a toroidal structure. Russian Journal of Physical Chemistry A, 2012, 86, 1268-1273.	0.1	17
27	Spectroscopic studies of molybdenum polyoxometallates with the buckyball structure and polymer-containing compositions based thereon. Russian Journal of Inorganic Chemistry, 2011, 56, 276-281.	0.3	8
28	Study of Safety of Molybdenum and Iron-Molybdenum Nanoclaster Polyoxometalates Intended for Targeted Delivery of Drugs. Journal of Biomaterials and Nanobiotechnology, 2011, 02, 557-560.	1.0	29
29	New data for molybdenum polyoxometallate with the buckyball structure containing acetate groups and compositions based thereon. Russian Journal of Inorganic Chemistry, 2010, 55, 808-813.	0.3	23
30	Molybdenum polyoxometalate buckyballs containing monochloroacetate groups and polymer compositions on their base. Russian Journal of Inorganic Chemistry, 2010, 55, 1260-1265.	0.3	4
31	Mass and charge transfer in systems containing nanocluster molybdenum polyoxometallates with a fullerene structure. Russian Journal of Physical Chemistry A, 2010, 84, 1022-1027.	0.1	23
32	Mutual stabilization of components in composites of polyoxomolybdates of buckyball structure and water-soluble nonionic polymers. Russian Journal of Applied Chemistry, 2010, 83, 332-336.	0.1	12
33	Thermal behavior of polyoxometalate Mo132. Russian Journal of Inorganic Chemistry, 2009, 54, 172-179.	0.3	20
34	Interaction of polyoxometalate Mo132 with poly(vinyl alcohol). Russian Journal of Inorganic Chemistry, 2009, 54, 611-617.	0.3	27
35	Simulation of oxidation of carbon particles at the surface of mixed oxide catalysts. Russian Journal of Applied Chemistry, 2007, 80, 257-262.	0.1	0