Jussi T Sopanen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9274433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development and verification of frequency domain solution methods for rotor-bearing system responses caused by rolling element bearing waviness. Mechanical Systems and Signal Processing, 2022, 163, 108117.	4.4	14
2	General-Purpose and Scalable Internal-Combustion Engine Model for Energy-Efficiency Studies. Machines, 2022, 10, 26.	1.2	5
3	State estimator based on an indirect Kalman filter for a hydraulically actuated multibody system. Multibody System Dynamics, 2022, 54, 373-398.	1.7	13
4	Physics-Based Digital Twins Merging With Machines: Cases of Mobile Log Crane and Rotating Machine. IEEE Access, 2022, 10, 45962-45978.	2.6	13
5	State Estimation in a Hydraulically Actuated Log Crane Using Unscented Kalman Filter. IEEE Access, 2022, 10, 62863-62878.	2.6	7
6	Fatigue life prediction of Electric RaceAbout (ERA) traction motor rotor. Procedia Structural Integrity, 2021, 31, 45-50.	0.3	10
7	Real-Time Multibody Model-Based Heads-Up Display Unit of a Tractor. IEEE Access, 2021, 9, 57645-57657.	2.6	10
8	Simulation-Based Transfer Learning for Support Stiffness Identification. IEEE Access, 2021, 9, 120652-120664.	2.6	4
9	Comparing double-step and penalty-based semirecursive formulations for hydraulically actuated multibody systems in a monolithic approach. Multibody System Dynamics, 2021, 52, 169-191.	1.7	14
10	Added value from virtual sensors. , 2021, , 90-101.		1
11	Gamification and the marketing of agricultural machinery. , 2021, , 77-89.		2
12	Design Space Method for Conceptual Design Exploration of High Speed Slitted Solid Induction Motor. , 2021, , .		5
13	Efficiency comparison of various friction models of a hydraulic cylinder in the framework of multibody system dynamics. Nonlinear Dynamics, 2021, 104, 3497-3515.	2.7	23
14	Design and Manufacturing of a Modular Low-Voltage Multimegawatt High-Speed Solid-Rotor Induction Motor. IEEE Transactions on Industry Applications, 2021, 57, 6903-6912.	3.3	15
15	Unbalance Estimation for a Large Flexible Rotor Using Force and Displacement Minimization. Machines, 2020, 8, 39.	1.2	7
16	Performance evaluation of touchdown bearing using model-based approach. Nonlinear Dynamics, 2020, 101, 211-232.	2.7	5
17	Unbalanced Magnetic Pull Effects on Rotordynamics of a High-Speed Induction Generator Supported by Active Magnetic Bearings – Analysis and Experimental Verification. IEEE Access, 2020, 8, 212361-212370.	2.6	13

18 Unbalanced Magnetic Pull Analysis for Rotordynamics of Induction Motors. , 2020, , .

#	Article	IF	CITATIONS
19	On the cosimulation of multibody systems and hydraulic dynamics. Multibody System Dynamics, 2020, 50, 143-167.	1.7	22
20	Simulation of Subcritical Vibrations of a Large Flexible Rotor with Varying Spherical Roller Bearing Clearance and Roundness Profiles. Machines, 2020, 8, 28.	1.2	9
21	Rotordynamic Simulation Method of Induction Motors Including the Effects of Unbalanced Magnetic Pull. IEEE Access, 2020, 8, 21631-21643.	2.6	19
22	Dynamic Response of a Lightweight Stator Structure for a Large Diameter Direct-Drive Wind Turbine Generator. Mechanisms and Machine Science, 2019, , 503-517.	0.3	0
23	A Case Study of the Contact Force and Stress in the Backup Bearing of a Generator: Experimental Study and Numerical Simulation of Dropdown. Mechanisms and Machine Science, 2019, , 374-386.	0.3	1
24	Effect of Operational Temperature on Contact Dynamics of Shrink-Fitted Compressor Impeller Joint. Mechanisms and Machine Science, 2019, , 3341-3351.	0.3	0
25	Analysis of Electromagnetic Excitations in an Integrated Centrifugal Pump and Permanent Magnet Synchronous Motor. IEEE Transactions on Energy Conversion, 2019, 34, 1759-1768.	3.7	15
26	Model Based Unbalance Identification for Paper Machine's Tube Roll. Mechanisms and Machine Science, 2019, , 3375-3384.	0.3	1
27	Deformable Terrain Model for the Real-Time Multibody Simulation of a Tractor With a Hydraulically Driven Front-Loader. IEEE Access, 2019, 7, 172694-172708.	2.6	20
28	Influence of surface waviness in the heat generation and thermal expansion of the touchdown bearing. European Journal of Mechanics, A/Solids, 2019, 74, 34-47.	2.1	17
29	Power Loss and Temperature Growth in the Backup Bearing of AMB-Supported High-Speed Electric Motor During a Dropdown. Mechanisms and Machine Science, 2019, , 144-156.	0.3	0
30	Fatigue life calculation procedure for the rotor of an embedded magnet traction motor taking into account thermomechanical loads. Mechanical Systems and Signal Processing, 2018, 111, 36-46.	4.4	23
31	Effect of off-sized balls on contact stresses in a touchdown bearing. Tribology International, 2018, 120, 340-349.	3.0	10
32	Development and validation of an integrated planetary gear set permanent magnet electric motor power loss model. Tribology International, 2018, 124, 34-45.	3.0	11
33	Computationally efficient approach for simulation of multibody and hydraulic dynamics. Mechanism and Machine Theory, 2018, 130, 435-446.	2.7	30
34	Combined semi-recursive formulation and lumped fluid method for monolithic simulation of multibody and hydraulic dynamics. Multibody System Dynamics, 2018, 44, 293-311.	1.7	21
35	Shrink-fitted joint behavior using three-dimensional solid finite elements in rotor dynamics with inclusion of stress-stiffening effect. Advances in Mechanical Engineering, 2018, 10, 168781401878005.	0.8	6
36	Vibration analysis of paper machine's asymmetric tube roll supported by spherical roller bearings. Mechanical Systems and Signal Processing, 2018, 104, 688-704.	4.4	18

#	Article	IF	CITATIONS
37	Gamification Procedure Based on Real-Time Multibody Simulation. International Review on Modelling and Simulations, 2018, 11, 259.	0.2	7
38	A touchdown bearing with surface waviness: Friction loss analysis. Mechanism and Machine Theory, 2017, 110, 73-84.	2.7	18
39	A touchdown bearing with surface waviness: A dynamic model using a multibody approach. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2017, 231, 658-669.	0.5	3
40	Chatter avoidance in cutting highly flexible workpieces. CIRP Annals - Manufacturing Technology, 2017, 66, 377-380.	1.7	47
41	Models for dynamic analysis of backup ball bearings of an AMB-system. Mechanical Systems and Signal Processing, 2017, 95, 324-344.	4.4	16
42	Stress Analysis of a Touchdown Bearing Having an Artificial Crack. , 2017, , .		2
43	Planetary gear sets power loss modeling: Application to wind turbines. Tribology International, 2017, 105, 42-54.	3.0	42
44	Theoretical Investigation Into Air Cooled Condenser Performance Optimization Through Parameterization for a 10 MW Power Plant. , 2017, , .		1
45	On the dynamic analysis of rotating shafts using nonlinear superelement and absolute nodal coordinate formulations. Advances in Mechanical Engineering, 2017, 9, 168781401773267.	0.8	7
46	Modeling and Dynamic Analysis of Spherical Roller Bearing with Localized Defects: Analytical Formulation to Calculate Defect Depth and Stiffness. Shock and Vibration, 2016, 2016, 1-11.	0.3	6
47	Multidisciplinary Design of a Permanent-Magnet Traction Motor for a Hybrid Bus Taking the Load Cycle into Account. IEEE Transactions on Industrial Electronics, 2016, 63, 3397-3408.	5.2	39
48	Multidisciplinary Design Process of a 6-Slot 2-Pole High-Speed Permanent-Magnet Synchronous Machine. IEEE Transactions on Industrial Electronics, 2016, 63, 784-795.	5.2	138
49	Stresses of an AMB-Supported Rotor Arising From the Sudden Contact With Backup Bearings. , 2015, , .		0
50	Application of Hub-Wheel Electric Motor Integrated With Two Step Planetary Transmission for Heavy Off-Road Vehicles. , 2015, , .		0
51	Simulation Environment for the Real-Time Dynamic Analysis of Hybrid Mobile Machines. , 2015, , .		2
52	Layered Sheet-Steel Damping Estimation Using Optical Vibrometry. , 2015, , .		3
53	Ball bearing model performance on various sized rotors with and without centrifugal and gyroscopic forces. Mechanism and Machine Theory, 2015, 90, 240-260.	2.7	29
54	Spherical Roller Bearing Simulation Model with Localized Defects. Mechanisms and Machine Science, 2015, , 1899-1909.	0.3	0

#	Article	IF	CITATIONS
55	Active magnetic bearing-supported rotor with misaligned cageless backup bearings: A dropdown event simulation model. Mechanical Systems and Signal Processing, 2015, 50-51, 692-705.	4.4	31
56	A Contact Event Model for an AMB-supported Rotor. Mechanisms and Machine Science, 2015, , 1513-1523.	0.3	0
57	Multi-Body Simulation Based Development Environment for Hybrid Working Machines. International Review on Modelling and Simulations, 2015, 8, 466.	0.2	2
58	Genetic Optimization of Geometrical Parameters of High Speed Rotor. , 2015, , .		1
59	Integrated hub-motor drive train for off-road vehicles. , 2014, , .		9
60	Torsional Vibration Analysis of Multiple Driving Mode Hybrid Bus Drivetrain. , 2014, , .		0
61	Twice-Running-Speed Resonances of a Paper Machine Tube Roll Supported by Spherical Roller Bearings: Analysis and Comparison With Experiments. , 2014, , .		2
62	Comparison of Ball Bearing Model Performance With and Without Centrifugal and Gyroscopic Forces. , 2014, , .		1
63	Behavior of thin rectangular ANCF shell elements in various mesh configurations. Nonlinear Dynamics, 2014, 78, 1277-1291.	2.7	21
64	Transmission configuration effect on total efficiency of Electric Vehicle powertrain. , 2014, , .		6
65	Experimental verification of a dynamic model of a tube roll in terms of subcritical superharmonic vibrations. Mechanism and Machine Theory, 2013, 64, 53-66.	2.7	5
66	Dynamic Model of Spherical Roller Bearing. , 2013, , .		1
67	Simple and Versatile Dynamic Model of Spherical Roller Bearing. International Journal of Rotating Machinery, 2013, 2013, 1-13.	0.8	31
68	Subcritical Twice-Running-Speed Vibrations of a Non-Ideal Rotor-Bearing-System: Simulation and Experiments. , 2012, , .		0
69	Dynamic Torque Analysis of a Wind Turbine Drive Train Including a Direct-Driven Permanent-Magnet Generator. IEEE Transactions on Industrial Electronics, 2011, 58, 3859-3867.	5.2	77
70	Dynamic Analysis of a Direct-Driven Permanent Magnet Generator Drive Train Including Flexible Turbine Blades. , 2011, , .		2
71	Electromagnetic and mechanical design aspects of a high-speed solid-rotor induction machine with no separate copper electric circuit in the megawatt range. Electrical Engineering, 2009, 91, 35-49.	1.2	15
72	Non-Linear Strain Description for Two-Dimensional Shear Deformable Beam Element Based on the Absolute Nodal Coordinate Formulation. , 2009, , .		0

#	ARTICLE	IF	CITATIONS
73	Effect of Misalignment of Retainer Bearings on Dynamic Responses of Rotor System During Emergency Stop. , 2007, , 1635.		0
74	Dynamic simulation of a flexible rotor during drop on retainer bearings. Journal of Sound and Vibration, 2007, 306, 601-617.	2.1	35
75	Three-Dimensional Beam Element Based on a Cross-Sectional Coordinate System Approach. Nonlinear Dynamics, 2006, 43, 311-327.	2.7	26
76	A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. Journal of Sound and Vibration, 2005, 280, 719-738.	2.1	101
77	Torsion Vibration Analysis of a Cardan Shaft Driven by a Permanent Magnet Electric Motor. , 2005, , 1143.		0
78	A Linear Beam Finite Element Based on the Absolute Nodal Coordinate Formulation. Journal of Mechanical Design, Transactions of the ASME, 2005, 127, 621-630.	1.7	39
79	Description of Elastic Forces in Absolute Nodal Coordinate Formulation. Nonlinear Dynamics, 2003, 34, 53-74.	2.7	157
80	Commissioning and Control of the AMB Supported 3.5 kW Laboratory Gas Blower Prototype. Solid State Phenomena, 0, 198, 451-456.	0.3	5
81	Electric Vehicle Energy Consumption Simulation by Modeling the Efficiency of Driveline Components. SAE International Journal of Commercial Vehicles, 0, 9, 31-39.	0.4	11