Chihiro Maeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9274063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent progress in catalytic conversions of carbon dioxide. Catalysis Science and Technology, 2014, 4, 1482.	4.1	463
2	Bifunctional Porphyrin Catalysts for the Synthesis of Cyclic Carbonates from Epoxides and CO ₂ : Structural Optimization and Mechanistic Study. Journal of the American Chemical Society, 2014, 136, 15270-15279.	13.7	404
3	Bifunctional Catalysts Based on <i>m</i> â€Phenyleneâ€Bridged Porphyrin Dimer and Trimer Platforms: Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides. Angewandte Chemie - International Edition, 2015, 54, 134-138.	13.8	273
4	Highly Active and Robust Metalloporphyrin Catalysts for the Synthesis of Cyclic Carbonates from a Broad Range of Epoxides and Carbon Dioxide. Chemistry - A European Journal, 2016, 22, 6556-6563.	3.3	176
5	Azaheliceneâ€Fused BODIPY Analogues Showing Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2020, 59, 7813-7817.	13.8	102
6	Synthesis of Carbazoleâ€Containing Porphyrinoids by a Multiple Annulation Strategy: A Coreâ€Modified and l€â€Expanded Porphyrin. Angewandte Chemie - International Edition, 2011, 50, 5691-5694.	13.8	79
7	Chiral self-discriminative self-assembling of meso–meso linked diporphyrins. Coordination Chemistry Reviews, 2007, 251, 2743-2752.	18.8	75
8	Dimeric Assemblies from 1,2,3-Triazole-Appended Zn(II) Porphyrins with Control of NH-Tautomerism in 1,2,3-Triazole. Organic Letters, 2008, 10, 549-552.	4.6	65
9	Electronic Tuning of Zinc Porphyrin Catalysts for the Conversion of Epoxides and Carbon Dioxide into Cyclic Carbonates. ChemCatChem, 2017, 9, 946-949.	3.7	54
10	Aluminum porphyrins with quaternary ammonium halides as catalysts for copolymerization of cyclohexene oxide and CO ₂ : metal–ligand cooperative catalysis. Chemical Science, 2020, 11, 5669-5675.	7.4	54
11	Carbazole-Based Boron Dipyrromethenes (BODIPYs): Facile Synthesis, Structures, and Fine-Tunable Optical Properties. Organic Letters, 2015, 17, 3090-3093.	4.6	53
12	Large Porphyrin Squares from the Selfâ€Assembly of <i>meso</i> â€Triazoleâ€Appended <scp>L</scp> â€Shaped <i>meso</i> – <i>meso</i> ‣inked Zn ^{II} –Triporphyrins: Synthesis and Efficient Energy Transfer. Chemistry - A European Journal, 2010, 16, 5052-5061.	3.3	45
13	Chiroptical and catalytic properties of doubly binaphthyl-strapped chiral porphyrins. Chemical Communications, 2019, 55, 1064-1067.	4.1	45
14	Colorâ€Tunable Solidâ€State Fluorescence Emission from Carbazoleâ€Based BODIPYs. Chemistry - A European Journal, 2016, 22, 7508-7513.	3.3	44
15	Synthesis of chiral carbazole-based BODIPYs showing circularly polarized luminescence. Chemical Communications, 2019, 55, 3136-3139.	4.1	42
16	Calix[4]pyrroles as macrocyclic organocatalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide. Catalysis Science and Technology, 2018, 8, 4193-4198.	4.1	40
17	Tetrameric and Hexameric Porphyrin Nanorings: Template Synthesis and Photophysical Properties. Journal of the American Chemical Society, 2020, 142, 15661-15666.	13.7	37
18	Azaheliceneâ€Fused BODIPY Analogues Showing Circularly Polarized Luminescence. Angewandte Chemie, 2020, 132, 7887-7891.	2.0	36

Chihiro Maeda

#	Article	IF	CITATIONS
19	Synthesis of Carbazole-Based Selenaporphyrin <i>via</i> Annulation. Organic Letters, 2013, 15, 578-581.	4.6	34
20	Synthesis and Characterization of Novel Fused Porphyrinoids Based on Cyclic Carbazole[2]indolones. Organic Letters, 2012, 14, 2122-2125.	4.6	31
21	Synthesis and Characterization of Carbazoleâ€Based Expanded Thiaporphyrins. Chemistry - A European Journal, 2013, 19, 2971-2975.	3.3	29
22	Theoretical Study on Highly Active Bifunctional Metalloporphyrin Catalysts for the Coupling Reaction of Epoxides with Carbon Dioxide. Chemical Record, 2016, 16, 2260-2267.	5.8	29
23	Chiral Bifunctional Metalloporphyrin Catalysts for Kinetic Resolution of Epoxides with Carbon Dioxide. Organic Letters, 2019, 21, 1853-1856.	4.6	26
24	Synthesis of carbazole-based BODIPY dimers showing red fluorescence in the solid state. Organic and Biomolecular Chemistry, 2017, 15, 9283-9287.	2.8	24
25	<i>meso</i> , <i>meso′</i> -Bis(5-azaindol-2-yl)-Appended <i>meso</i> â^² <i>meso</i> -Linked Zn(II) Diporphyrin: A Discrete Fluorescent Assembly. Organic Letters, 2009, 11, 5322-5325.	4.6	23
26	Synthesis of <i>meso</i> , <i>meso</i> ′-Pyrrole-Bridged Diporphyrins by Cu(I)-Mediated Annulation. Organic Letters, 2010, 12, 1820-1823.	4.6	23
27	Effective π-Extension of Carbazole-Based Thiaporphyrins by Peripheral Phenylethynyl Substituents. Organic Letters, 2013, 15, 3566-3569.	4.6	23
28	Synthesis and Chiroptical Properties of Chiral Carbazoleâ€Based BODIPYs. Chemistry - A European Journal, 2020, 26, 4261-4268.	3.3	23
29	Aggregationâ€Induced Circularly Polarized Luminescence from Boron Complexes with a Carbazolyl Schiff Base. Chemistry - A European Journal, 2020, 26, 13016-13021.	3.3	23
30	Synthesis ofmeso-5-Azaindolyl-Appended Zn(II) Porphyrins via Pd-Catalyzed Annulation. Organic Letters, 2007, 9, 2493-2496.	4.6	22
31	Carbazole-based BODIPYs with ethynyl substituents at the boron center: solid-state excimer fluorescence in the VIS/NIR region. Organic and Biomolecular Chemistry, 2017, 15, 7783-7788.	2.8	22
32	Synthesis of carbazole-based hetero-core-modified porphyrins. Organic and Biomolecular Chemistry, 2014, 12, 2656-2662.	2.8	21
33	Peripherally ethynylated carbazole-based core-modified porphyrins. Organic and Biomolecular Chemistry, 2012, 10, 5182.	2.8	20
34	Effects of cyano, ethynyl and ethylenedioxy groups on the photophysical properties of carbazole-based porphyrins. Organic and Biomolecular Chemistry, 2015, 13, 11286-11291.	2.8	17
35	Intramolecular Electronic Coupling in the Thiophene-Bridged Carbazole-Based Diporphyrin. Organic Letters, 2016, 18, 6070-6073.	4.6	16
36	Facile Synthesis of Azahelicenes and Diaza[8]circulenes through the Intramolecular Scholl Reaction. Chemistry - A European Journal, 2021, 27, 15699-15705.	3.3	15

Chihiro Maeda

#	Article	IF	CITATIONS
37	Selective Formation of a Single Atropisomer of <i>meso</i> – <i>meso</i> ‣inked Zn ^{II} Diporphyrin through Supramolecular Selfâ€Assembly. Chemistry - A European Journal, 2009, 15, 9681-9684.	3.3	14
38	New Synthetic Strategy for Diporphyrins: Pinacol Coupling–Rearrangement. Chemistry - A European Journal, 2011, 17, 7154-7157.	3.3	12
39	Synthesis and electronic properties of ĩ€-expanded carbazole-based porphyrins. Chemical Communications, 2019, 55, 10162-10165.	4.1	12
40	Molecular engineering and solvent dependence of excitation energy hopping in self-assembled porphyrin boxes. Chemical Communications, 2012, 48, 4181.	4.1	11
41	Oxidation of hydroquinones with meso-hexakispentafluorophenyl [26]hexaphyrin(1.1.1.1.1.1). Organic and Biomolecular Chemistry, 2006, 4, 200-202.	2.8	10
42	Palladium Complexes of Carbazoleâ€Based Chalcogenaisophlorins: Synthesis, Structure, and Solidâ€ S tate NIR Absorption Spectra. ChemPlusChem, 2017, 82, 1368-1371.	2.8	9
43	Synthesis and electronic properties of carbazole-based core-modified diporphyrins showing near infrared absorption. Chemical Communications, 2020, 56, 15048-15051.	4.1	5
44	Chiral carbazole-based porphyrins showing absorption and circular dichroism in the near-infrared region. Journal of Porphyrins and Phthalocyanines, 2020, 24, 247-251.	0.8	2
45	Bifunctional Catalysts for the CO ₂ Fixation: Structural Optimization to Maximize the Synergetic Effect. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 814-823.	0.1	2
46	Frontispiece: Highly Active and Robust Metalloporphyrin Catalysts for the Synthesis of Cyclic Carbonates from a Broad Range of Epoxides and Carbon Dioxide. Chemistry - A European Journal, 2016, 22, .	3.3	0
47	Palladium Complexes of Carbazole-Based Chalcogenaisophlorins: Synthesis, Structure, and Solid-State NIR Absorption Spectra. ChemPlusChem, 2017, 82, 1367-1367.	2.8	0
48	Frontispiece: Synthesis and Chiroptical Properties of Chiral Carbazoleâ€Based BODIPYs. Chemistry - A European Journal, 2020, 26, .	3.3	0
49	Synthesis of Chiral Carbazole-Based Porphyrins and Bodipys. ECS Meeting Abstracts, 2021, MA2021-01, 743-743.	0.0	0
50	Peripheral π-Extention of Carbazole-Based Porphyrins. ECS Meeting Abstracts, 2019, , .	0.0	0
51	Synthesis of Chiral Carbazole-Based Porphyrins and BODIPYs. ECS Meeting Abstracts, 2020, MA2020-01, 905-905.	0.0	0