
Charles C Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/927406/publications.pdf Version: 2024-02-01

CHADLES CLEE

#	Article	IF	CITATIONS
1	Vitamin D attenuated 6-OHDA-induced behavioural deficits, dopamine dysmetabolism, oxidative stress, and neuro-inflammation in mice. Nutritional Neuroscience, 2022, 25, 823-834.	3.1	22
2	CA1 Spike Timing is Impaired in the 129S Inbred Strain During Cognitive Tasks. Neuroscience, 2022, 484, 119-138.	2.3	3
3	Auditory Thalamocortical Transformations. , 2022, , 315-328.		Ο
4	Perineuronal Nets in the Prefrontal Cortex of a Schizophrenia Mouse Model: Assessment of Neuroanatomical, Electrophysiological, and Behavioral Contributions. International Journal of Molecular Sciences, 2021, 22, 11140.	4.1	10
5	An in vivo Cell-Based Delivery Platform for Zinc Finger Artificial Transcription Factors in Pre-clinical Animal Models. Frontiers in Molecular Neuroscience, 2021, 14, 789913.	2.9	2
6	Crossed Connections From Insular Cortex to the Contralateral Thalamus. Frontiers in Neural Circuits, 2021, 15, 710925.	2.8	3
7	Disc1 Carrier Mice Exhibit Alterations in Neural pIGF-1Rβ and Related Kinase Expression. Frontiers in Cellular Neuroscience, 2020, 14, 94.	3.7	2
8	Expression of Behavioral Phenotypes in Genetic and Environmental Mouse Models of Schizophrenia. Frontiers in Behavioral Neuroscience, 2020, 14, 29.	2.0	16
9	Positive Modulation of SK Channel Impedes Neuron-Specific Cytoskeletal Organization and Maturation. Developmental Neuroscience, 2020, 42, 59-71.	2.0	1
10	Propagating wave activity in a tangential cortical slice. NeuroReport, 2020, 31, 332-337.	1.2	0
11	Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 2020, 14, 592710.	3.7	40
12	Contrasting characteristic behaviours among common laboratory mouse strains. Royal Society Open Science, 2019, 6, 190574.	2.4	37
13	Hyper-Crosslinked Carbohydrate Polymer for Repair of Critical-Sized Bone Defects. BioResearch Open Access, 2019, 8, 111-120.	2.6	6
14	Perineuronal net aberrations as a putative mechanism of behavioral and neural alterations in DISC-1 mutation model of schizophrenia. IBRO Reports, 2019, 6, S480.	0.3	0
15	SK Channel Modulates Synaptic Plasticity by Tuning CaMKIIα/β Dynamics. Frontiers in Synaptic Neuroscience, 2019, 11, 18.	2.5	9
16	Scalable fabrication of sub-10 nm polymer nanopores for DNA analysis. Microsystems and Nanoengineering, 2019, 5, 12.	7.0	33
17	Stem and progenitor cell microenvironment for bone regeneration and repair. Regenerative Medicine, 2019, 14, 693-702.	1.7	19
18	CaMKIIα expression in a mouse model of NMDAR hypofunction schizophrenia: Putative roles for IGF-1R and TLR4. Brain Research Bulletin, 2018, 137, 53-70.	3.0	25

CHARLES C LEE

#	Article	IF	CITATIONS
19	Upregulated SK2 Expression and Impaired CaMKII Phosphorylation Are Shared Synaptic Defects Between 16p11.2del and 129S: <i>Δdisc1</i> Mutant Mice. ASN Neuro, 2018, 10, 175909141881764.	2.7	3
20	Functional Topography and Development of Inhibitory Reticulothalamic Barreloid Projections. Frontiers in Neuroanatomy, 2018, 12, 87.	1.7	2
21	A Putative Mechanism of Age-Related Synaptic Dysfunction Based on the Impact of IGF-1 Receptor Signaling on Synaptic CaMKIIα Phosphorylation. Frontiers in Neuroanatomy, 2018, 12, 35.	1.7	11
22	Editorial: Spontaneous Activity in Sensory Systems. Frontiers in Neural Circuits, 2018, 12, 27.	2.8	4
23	Inhibitory Projections in the Mouse Auditory Tectothalamic System. Brain Sciences, 2018, 8, 103.	2.3	9
24	Stress-altered synaptic plasticity and DAMP signaling in the hippocampus-PFC axis; elucidating the significance of IGF-1/IGF-1R/CaMKIIα expression in neural changes associated with a prolonged exposure therapy. Neuroscience, 2017, 353, 147-165.	2.3	15
25	Thalamic dopaminergic neurons projects to the paraventricular nucleusâ€rostral ventrolateral medulla/C1 neural circuit. Anatomical Record, 2017, 300, 1307-1314.	1.4	14
26	Systemic Sympathoexcitation Was Associated with Paraventricular Hypothalamic Phosphorylation of Synaptic CaMKIIα and MAPK/ErK. Frontiers in Neuroscience, 2017, 11, 447.	2.8	3
27	Wisteria Floribunda Agglutinin-Labeled Perineuronal Nets in the Mouse Inferior Colliculus, Thalamic Reticular Nucleus and Auditory Cortex. Brain Sciences, 2016, 6, 13.	2.3	17
28	From Savannas to Settlements: Exploring Cognitive Foundations for the Design of Urban Spaces. Frontiers in Psychology, 2016, 7, 1607.	2.1	2
29	Ageâ€dependent alterations to paraventricular nucleus insulinâ€like growth factor 1 receptor as a possible link between sympathoexcitation and inflammation. Journal of Neurochemistry, 2016, 139, 706-721.	3.9	8
30	Inhibition of mammillary body neurons by direct activation of Group II metabotropic glutamate receptors. Neurotransmitter (Houston, Tex), 2016, 3, .	1.2	0
31	Nicotinic alteration of functional thalamocortical topography. NeuroReport, 2015, 26, 688-694.	1.2	3
32	Exploring functions for the non-lemniscal auditory thalamus. Frontiers in Neural Circuits, 2015, 9, 69.	2.8	45
33	Commissural functional topography of the inferior colliculus assessed inÂvitro. Hearing Research, 2015, 328, 94-101.	2.0	9
34	Auditory Thalamocortical Transformations. , 2015, , 278-292.		0
35	Frequency transformation in the auditory lemniscal thalamocortical system. Frontiers in Neural Circuits, 2014, 8, 75.	2.8	9
36	Two types of auditory glutamatergic synapses and their implications for repairing damaged central auditory pathways. Neural Regeneration Research, 2014, 9, 1000.	3.0	1

CHARLES C LEE

#	Article	IF	CITATIONS
37	Differential Expression of mGluR2 in the Developing Cerebral Cortex of the Mouse. Journal of Biomedical Science and Engineering, 2014, 07, 1030-1037.	0.4	10
38	Thalamic and cortical pathways supporting auditory processing. Brain and Language, 2013, 126, 22-28.	1.6	52
39	Functional Convergence of Thalamic and Intrinsic Projections to Cortical Layers 4 and 6. Neurophysiology, 2013, 45, 396-406.	0.3	20
40	Laser-scanning Photostimulation of Optogenetically Targeted Forebrain Circuits. Journal of Visualized Experiments, 2013, , 50915.	0.3	6
41	Auditory Thalamocortical Transformations. , 2013, , 1-16.		1
42	Intracortical convergence of layer 6 neurons. NeuroReport, 2012, 23, 736-740.	1.2	28
43	Intrinsic modulators of auditory thalamocortical transmission. Hearing Research, 2012, 287, 43-50.	2.0	26
44	Convergence of thalamic and cortical pathways in cat auditory cortex. Hearing Research, 2011, 274, 85-94.	2.0	53
45	On the classification of pathways in the auditory midbrain, thalamus, and cortex. Hearing Research, 2011, 276, 79-87.	2.0	67
46	Wiring of Divergent Networks in the Central Auditory System. Frontiers in Neuroanatomy, 2011, 5, 46.	1.7	18
47	A Synthesis of Auditory Cortical Connections: Thalamocortical, Commissural and Corticocortical Systems. , 2011, , 147-170.		8
48	Patterns of olivocochlear axonal branches. Open Journal of Neuroscience, 2011, 1, .	1.2	3
49	Specific and nonspecific thalamocortical connectivity in the auditory and somatosensory thalamocortical slices. NeuroReport, 2010, 21, 861-864.	1.2	22
50	Drivers and modulators in the central auditory pathways. Frontiers in Neuroscience, 2010, 4, 79.	2.8	51
51	Topography and physiology of ascending streams in the auditory tectothalamic pathway. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 372-377.	7.1	81
52	Areas of cat auditory cortex as defined by neurofilament proteins expressing SMI-32. Hearing Research, 2010, 267, 119-136.	2.0	50
53	Modulator property of the intrinsic cortical projection from layer 6 to layer 4. Frontiers in Systems Neuroscience, 2009, 3, 3.	2.5	46
54	Glutamatergic Inhibition in Sensory Neocortex. Cerebral Cortex, 2009, 19, 2281-2289.	2.9	46

CHARLES C LEE

#	Article	IF	CITATIONS
55	Connections of cat auditory cortex: I. Thalamocortical system. Journal of Comparative Neurology, 2008, 507, 1879-1900.	1.6	123
56	Connections of cat auditory cortex: III. Corticocortical system. Journal of Comparative Neurology, 2008, 507, 1920-1943.	1.6	102
57	Connections of cat auditory cortex: II. Commissural system. Journal of Comparative Neurology, 2008, 507, 1901-1919.	1.6	55
58	Synaptic Properties of Thalamic and Intracortical Inputs to Layer 4 of the First- and Higher-Order Cortical Areas in the Auditory and Somatosensory Systems. Journal of Neurophysiology, 2008, 100, 317-326.	1.8	147
59	The distributed auditory cortex. Hearing Research, 2007, 229, 3-13.	2.0	146
60	Principles Governing Auditory Cortex Connections. Cerebral Cortex, 2005, 15, 1804-1814.	2.9	83
61	Auditory thalamocortical transformation: structure and function. Trends in Neurosciences, 2005, 28, 255-263.	8.6	183
62	Challenges to a Neuroanatomical Theory of Forebrain Auditory Plasticity. , 2005, , 109-125.		3
63	Concurrent Tonotopic Processing Streams in Auditory Cortex. Cerebral Cortex, 2004, 14, 441-451.	2.9	99