Mathew G Newville

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/927378/publications.pdf

Version: 2024-02-01

201 papers

29,173 citations

55 h-index 168

205 all docs 205
docs citations

205 times ranked 33639 citing authors

g-index

#	Article	IF	CITATIONS
1	The absorption indicatrix as an empirical model to describe anisotropy in X-ray absorption spectra of pyroxenes. American Mineralogist, 2022, 107, 654-663.	0.9	5
2	Diffusion anisotropy of Ti in zircon and implications for Ti-in-zircon thermometry. Earth and Planetary Science Letters, 2022, 578, 117317.	1.8	15
3	Rapid reduction of basaltic glasses in piston-cylinder experiments: a XANES study. Contributions To Mineralogy and Petrology, 2021, 176, 1.	1.2	4
4	Radiation-Induced Changes in Vanadium Speciation in Basaltic Glasses: Implications for Oxybarometry Measurements Using Vanadium K-edge X-ray Absorption Spectroscopy. American Mineralogist, 2021, , .	0.9	1
5	Trace elemental behavior in the solar nebula: Synchrotron X-ray fluorescence analyses of CM and CR chondritic iron sulfides and associated metal. Geochimica Et Cosmochimica Acta, 2021, 310, 131-154.	1.6	2
6	SMART mineral mapping: Synchrotron-based machine learning approach for 2D characterization with coupled micro XRF-XRD. Computers and Geosciences, 2021, 156, 104898.	2.0	19
7	Improving the reliability of Fe- and S-XANES measurements in silicate glasses: Correcting beam damage and identifying Fe-oxide nanolites in hydrous and anhydrous melt inclusions. Chemical Geology, 2021, 586, 120610.	1.4	14
8	Oxybarometry and valence quantification based on microscale X-ray absorption fine structure (XAFS) spectroscopy of multivalent elements. Chemical Geology, 2020, 531, 119305.	1.4	15
9	Redox state of Earth's magma ocean and its Venus-like early atmosphere. Science Advances, 2020, 6, .	4.7	69
10	Origin of the isostructural electronic states of the topological insulator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mphysical .<="" 102,="" 2020,="" b,="" review="" td=""><td>ın>L1/mm</td><td>nl:mno> </td></mml:mphysical></mml:msub></mml:mrow></mml:math>	ın> L 1/mm	nl:m no>
11	Structure Analysis of Natural Wangdaodeite—LiNbO3-Type FeTiO3. Minerals (Basel, Switzerland), 2020, 10, 1072.	0.8	3
12	XANES spectroscopy of sulfides stable under reducing conditions. American Mineralogist, 2020, 105, 375-381.	0.9	10
13	xmins:mmi="http://www.w3.org/1998/Nath/Math/ML"> <mmi:mrow><mmi:mi>k</mmi:mi><mmi:mtext>a phase of the topological insulator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">bs/mml:mi><mml:msub><mml:mi< td=""><td>nl:mtext><</td><td>:mml:mn>3x/n 8</td></mml:mi<></mml:msub></mml:mi </mml:mrow></mml:math </mmi:mtext></mmi:mrow>	nl:mtext><	:mml:mn>3x/n 8
14	Snow Algae Preferentially Grow on Fe-containing Minerals and Contribute to the Formation of Fe Phases. Geomicrobiology Journal, 2020, 37, 572-581.	1.0	7
15	Effect of cooling profile on crystalline phases, oxidation state, and chemical partitioning of complex glasses. MRS Advances, 2020, 5, 569-579.	0.5	2
16	Riesite, a New High Pressure Polymorph of TiO2 from the Ries Impact Structure. Minerals (Basel,) Tj ETQq0 0 0 rg	zBT/Qverl	ock 10 Tf 50 1
17	Polyamorphism of GeO ₂ Glass at High Pressure. Physica Status Solidi (B): Basic Research, 2020, 257, 2000052.	0.7	8
18	Valence determinations and oxybarometry on FIBâ€sectioned olivine and pyroxene using correlated Ti, V, and Cr microâ€XAFS spectroscopy: Evaluation of ionâ€milling effects and application to Antarctic micrometeorite grains. Meteoritics and Planetary Science, 2020, 55, 2553-2569.	0.7	1

#	Article	IF	CITATIONS
19	In-situ mapping of ferric iron variations in lunar glasses using X-ray absorption spectroscopy. American Mineralogist, 2019, 104, 453-458.	0.9	6
20	The source of sulfate in brachiopod calcite: Insights from $\hat{l}^{1}\!\!/\!\!4$ -XRF imaging and XANES spectroscopy. Chemical Geology, 2019, 529, 119328.	1.4	10
21	Selective Ion Accumulation in Biomineralizing Marine Acantharia. Microscopy and Microanalysis, 2019, 25, 1072-1073.	0.2	1
22	Insights into past ocean proxies from micron-scale mapping of sulfur species in carbonates. Geology, 2019, 47, 833-837.	2.0	12
23	Direct measurements of copper speciation in basaltic glasses: understanding the relative roles of sulfur and oxygen in copper complexation in melts. Geochimica Et Cosmochimica Acta, 2019, 267, 164-178.	1.6	15
24	Depositional and diagenetic constraints on the abundance and spatial variability of carbonate-associated sulfate. Chemical Geology, 2019, 523, 59-72.	1.4	23
25	Solubility and speciation of iron in hydrothermal fluids. Geochimica Et Cosmochimica Acta, 2019, 252, 126-143.	1.6	38
26	Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth's deep mantle. Science, 2018, 359, 1136-1139.	6.0	166
27	Vanadium, sulfur, and iron valences in melt inclusions as a window into magmatic processes: A case study at Nyamuragira volcano, Africa. Geochimica Et Cosmochimica Acta, 2018, 226, 149-173.	1.6	15
28	Substitution and diffusion of Cr2+ and Cr3+ in synthetic forsterite and natural olivine at 1200–1500†°C and 1†bar. Geochimica Et Cosmochimica Acta, 2018, 220, 407-428.	1.6	35
29	Arsenic uptake in bacterial calcite. Geochimica Et Cosmochimica Acta, 2018, 222, 642-654.	1.6	20
30	A Mössbauer-based XANES calibration for hydrous basalt glasses reveals radiation-induced oxidation of Fe. American Mineralogist, 2018, 103, 489-501.	0.9	57
31	Accurate predictions of microscale oxygen barometry in basaltic glasses using V K-edge X-ray absorption spectroscopy: A multivariate approach. American Mineralogist, 2018, 103, 1282-1297.	0.9	16
32	A call for a round robin study of XAFS stability and platform dependence at synchrotron beamlines on well defined samples. Journal of Synchrotron Radiation, 2018, 25, 935-943.	1.0	4
33	Copper complexation and solubility in high-temperature hydrothermal fluids: A combined study by Raman, X-ray fluorescence, and X-ray absorption spectroscopies and ab initio molecular dynamics simulations. Chemical Geology, 2018, 494, 69-79.	1.4	14
34	Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy. Materials Research Letters, 2018, 6, 450-455.	4.1	54
35	Calibration of Fe XANES for high-precision determination of Fe oxidation state in glasses: Comparison of new and existing results obtained at different synchrotron radiation sources. American Mineralogist, 2017, 102, 369-380.	0.9	31
36	Spatially Resolved Elemental Analysis, Spectroscopy and Diffraction at the GSECARS Sector at the Advanced Photon Source. Journal of Environmental Quality, 2017, 46, 1158-1165.	1.0	24

#	Article	IF	Citations
37	Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate. Nature Communications, 2017, 8, 14667.	5.8	37
38	Evaluating zinc isotope fractionation under sulfate reducing conditions using a flow-through cell and in situ XAS analysis. Geochimica Et Cosmochimica Acta, 2017, 203, 1-14.	1.6	29
39	The bulk valence state of Fe and the origin of water in chondrites. Geochimica Et Cosmochimica Acta, 2017, 211, 115-132.	1.6	42
40	Ion Diffusion Within Water Films in Unsaturated Porous Media. Environmental Science & Emp; Technology, 2017, 51, 4338-4346.	4.6	24
41	Quantifying and correcting the effects of anisotropy in XANES measurements of chromium valence in olivine: Implications for a new olivine oxybarometer. American Mineralogist, 2017, 102, 1165-1172.	0.9	8
42	Theory and Analysis of XAFS. , 2017, , 13-50.		2
43	The effect of self-consistent potentials on EXAFS analysis. Journal of Synchrotron Radiation, 2017, 24, 1173-1179.	1.0	3
44	Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model., 2017, 58, 708.		105
45	Redox variations in the inner solar system with new constraints from vanadium XANES in spinels. American Mineralogist, 2016, 101, 1928-1942.	0.9	56
46	Mobility of iron and nickel at low temperatures: Implications for 60Fe–60Ni systematics of chondrules from unequilibrated ordinary chondrites. Geochimica Et Cosmochimica Acta, 2016, 178, 87-105.	1.6	25
47	Spectroscopic Investigation of the Coloration and Fabrication Conditions of Medieval Blue Glasses. Journal of the American Ceramic Society, 2016, 99, 89-97.	1.9	28
48	Structure and thermodynamic stability of UTa ₃ O ₁₀ , a U(<scp>v</scp>)-bearing compound. Dalton Transactions, 2016, 45, 18892-18899.	1.6	6
49	Structure and thermodynamics of uranium-containing iron garnets. Geochimica Et Cosmochimica Acta, 2016, 189, 269-281.	1.6	41
50	Synchrotronâ€based Xâ€Ray Spectroscopy Studies for Redoxâ€based Remediation of Lead, Zinc, and Cadmium in Mine Waste Materials. Journal of Environmental Quality, 2016, 45, 1883-1893.	1.0	22
51	XAFS Data Interchange: A single spectrum XAFS data file format. Journal of Physics: Conference Series, 2016, 712, 012148.	0.3	8
52	Synchrotron Xâ€ray fluorescence spectroscopy of salts in natural sea ice. Earth and Space Science, 2016, 3, 463-479.	1,1	13
53	Effect of cation field strength on Co2+ speciation in alkali-borate glasses. Journal of Non-Crystalline Solids, 2016, 451, 101-110.	1.5	28
54	Valence and metal/silicate partitioning of Mo: Implications for conditions of Earth accretion and core formation. Earth and Planetary Science Letters, 2016, 437, 89-100.	1.8	27

#	Article	IF	CITATIONS
55	U(<scp>v</scp>) in metal uranates: a combined experimental and theoretical study of MgUO ₄ , CrUO ₄ , and FeUO ₄ . Dalton Transactions, 2016, 45, 4622-4632.	1.6	45
56	Structural environment of iron and accurate determination of Fe3+ $\hat{\Pi}$ EFe ratios in andesitic glasses by XANES and Mössbauer spectroscopy. Chemical Geology, 2016, 428, 48-58.	1.4	36
57	High-speed, coupled micro-beam XRD/XRF/XAFS mapping at GSECARS: APS Beamline 13-ID-E., 2016, , 53-64.		3
58	Spectroscopic Evidence of Uranium Immobilization in Acidic Wetlands by Natural Organic Matter and Plant Roots. Environmental Science & Environmental S	4.6	39
59	Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (<i>Medicago) Tj ETQq1 1 C</i>).784314 4.6	rgBT/Overlo
60	Redox evolution of silicic magmas: Insights from XANES measurements of Ce valence in Bishop Tuff zircons. Chemical Geology, 2015, 402, 77-88.	1.4	33
61	High pressure induced charge transfer in 3d–4f bimetallic photomagnetic materials. Chemical Communications, 2015, 51, 8868-8871.	2.2	13
62	Charge-Coupled Substituted Garnets (Y _{3–<i>x</i>} Ca _{0.5<i>x</i>} M _{0.5<i>x</i>})Fe ₅ O _{12<td>sub></td><td>29</td>}	sub>	29
63	Hyperspectral image reconstruction for x-ray fluorescence tomography. Optics Express, 2015, 23, 9014.	1.7	33
64	Sb5+ and Sb3+ substitution in segnitite: A new sink for As and Sb in the environment and implications for acid mine drainage. American Mineralogist, 2014, 99, 1355-1359.	0.9	8
65	XANES measurements of Cr valence in olivine and their applications to planetary basalts. American Mineralogist, 2014, 99, 1404-1412.	0.9	36
66	Spectroscopic properties of five-coordinated Co2+ in phosphates. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 117, 406-412.	2.0	28
67	X-ray absorption spectroscopy of GeO ₂ glass to 64 GPa. Journal of Physics Condensed Matter, 2014, 26, 035104.	0.7	28
68	Cerium Substitution in Yttrium Iron Garnet: Valence State, Structure, and Energetics. Chemistry of Materials, 2014, 26, 1133-1143.	3.2	53
69	Distributions of iron, phosphorus and sulfur along trichomes of the cyanobacteria Trichodesmium. Metallomics, 2014, 6, 1141-1149.	1.0	4
70	Synchrotron x-Ray Spectroscopic Analysis. , 2014, , 213-230.		4
71	Local Ordering Around Tetrahedral Co ²⁺ in Silicate Glasses. Journal of the American Ceramic Society, 2014, 97, 60-62.	1.9	33
72	Fundamentals of XAFS. Reviews in Mineralogy and Geochemistry, 2014, 78, 33-74.	2.2	215

#	Article	IF	Citations
73	Retention and chemical speciation of uranium in an oxidized wetland sediment from the Savannah River Site. Journal of Environmental Radioactivity, 2014, 131, 40-46.	0.9	37
74	Micro-X-Ray Fluorescence, Micro-X-Ray Absorption Spectroscopy, and Micro-X-Ray Diffraction Investigation of Lead Speciation after the Addition of Different Phosphorus Amendments to a Smelter-Contaminated Soil. Journal of Environmental Quality, 2014, 43, 488-497.	1.0	22
75	Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data. Journal of Synchrotron Radiation, 2014, 21, 1224-1230.	1.0	86
76	Developing vanadium valence state oxybarometers (spinel-melt, olivine-melt, spinel-olivine) and V/(Cr+Al) partitioning (spinel-melt) for martian olivine-phyric basalts. American Mineralogist, 2013, 98, 2193-2196.	0.9	21
77	Experimental demonstration of novel imaging geometries for xâ€ray fluorescence computed tomography. Medical Physics, 2013, 40, 061903.	1.6	26
78	Abiotic Reductive Immobilization of U(VI) by Biogenic Mackinawite. Environmental Science & Emp; Technology, 2013, 47, 2361-2369.	4.6	100
79	Redox systematics of martian magmas with implications for magnetite stability. American Mineralogist, 2013, 98, 616-628.	0.9	35
80	High-pressure X-ray absorption fine structure in the diamond anvil cell and its applications in geological materials. Journal of Physics: Conference Series, 2013, 430, 012120.	0.3	4
81	Larch: An Analysis Package for XAFS and Related Spectroscopies. Journal of Physics: Conference Series, 2013, 430, 012007.	0.3	244
82	Pressure-induced transformations in amorphous Si-Ge alloy. Physical Review B, 2012, 85, .	1.1	9
83	Efficient simultaneous reverse Monte Carlo modeling of pair-distribution functions and extended x-ray-absorption fine structure spectra of crystalline disordered materials. Journal of Chemical Physics, 2012, 136, 074105.	1.2	16
84	Grain Accumulation of Selenium Species in Rice (Oryza sativa L.). Environmental Science & Emp; Technology, 2012, 46, 5557-5564.	4.6	82
85	Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology, 2012, 40, 915-918.	2.0	285
86	Towards data format standardization for X-ray absorption spectroscopy. Journal of Synchrotron Radiation, 2012, 19, 869-874.	1.0	16
87	Thickness measurements of nanoscale brine films on silica surfaces under geologic CO ₂ sequestration conditions using synchrotron Xâ€ray fluorescence. Water Resources Research, 2012, 48, .	1.7	30
88	Highâ€Iron Biosolids Compost–Induced Changes in Lead and Arsenic Speciation and Bioaccessibility in Coâ€contaminated Soils. Journal of Environmental Quality, 2012, 41, 1612-1622.	1.0	34
89	The Unique Biogeochemical Signature of the Marine Diazotroph Trichodesmium. Frontiers in Microbiology, 2012, 3, 150.	1.5	57
90	Zinc Speciation in Proximity to Phosphate Application Points in a Lead/Zinc Smelter–Contaminated Soil. Journal of Environmental Quality, 2012, 41, 1865-1873.	1.0	22

#	Article	IF	CITATIONS
91	Quantitative performance measurements of bent crystal Laue analyzers for X-ray fluorescence spectroscopy. Journal of Synchrotron Radiation, 2012, 19, 375-380.	1.0	10
92	Sulfides from martian and lunar basalts: Comparative chemistry for Ni, Co, Cu, and Se. American Mineralogist, 2011, 96, 932-935.	0.9	8
93	The effect of fO2 on the partitioning and valence of V and Cr in garnet/melt pairs and the relation to terrestrial mantle V and Cr content. American Mineralogist, 2011, 96, 1278-1290.	0.9	29
94	Direct determination of europium valence state by XANES in extraterrestrial merrillite: Implications for REE crystal chemistry and martian magmatism. American Mineralogist, 2011, 96, 1418-1421.	0.9	26
95	Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytologist, 2011, 192, 87-98.	3.5	170
96	Cellular Sequestration of Cadmium in the Hyperaccumulator Plant Species <i>Sedum alfredii</i> Â Â Â. Plant Physiology, 2011, 157, 1914-1925.	2.3	172
97	Standardizing data formats for X-ray absorption spectra and libraries. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C171-C171.	0.3	0
98	Arsenic microdistribution and speciation in toenail clippings of children living in a historic gold mining area. Science of the Total Environment, 2010, 408, 2590-2599.	3.9	55
99	<i>In Situ</i> study of Nucleation of Zirconia in an MgO–Al ₂ Class. Journal of the American Ceramic Society, 2010, 93, 342-344.	1.9	55
100	Partitioning of Eu between augite and a highly spiked martian basalt composition as a function of oxygen fugacity (IW-1 to QFM): Determination of Eu2+/Eu3+ ratios by XANES. American Mineralogist, 2010, 95, 410-413.	0.9	19
101	X-ray fluorescence tomography using imaging detectors. , 2010, , .		4
102	The nanoparticulate nature of invisible gold in arsenopyrite from Pezinok (Slovakia). Neues Jahrbuch Fur Mineralogie, Abhandlungen, 2010, 187, 1-9.	0.1	12
103	Evidence for nanoscale two-dimensional Co clusters in CoPt ₃ films with perpendicular magnetic anisotropy. Journal of Physics Condensed Matter, 2010, 22, 146002.	0.7	11
104	High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell. Review of Scientific Instruments, 2009, 80, 073908.	0.6	39
105	Grain Unloading of Arsenic Species in Rice Â. Plant Physiology, 2009, 152, 309-319.	2.3	268
106	Antimony sinks in the weathering crust of bullets from Swiss shooting ranges. Science of the Total Environment, 2009, 407, 1669-1682.	3.9	68
107	Cadmium sorption, influx, and efflux at the mesophyll layer of leaves from ecotypes of the Zn/Cd hyperaccumulator <i>Thlaspi caerulescens</i> . New Phytologist, 2009, 181, 626-636.	3.5	43
108	On the valency state of radiogenic lead in zircon and its consequences. Chemical Geology, 2009, 261, 4-11.	1.4	62

7

#	Article	IF	CITATIONS
109	The speciation of copper in natural fluid inclusions at temperatures up to 700°C. Chemical Geology, 2009, 259, 2-7.	1.4	23
110	Improvements in modeling EXAFS with many-pole self-energy and FEFF 8.5. Journal of Physics: Conference Series, 2009, 190, 012023.	0.3	9
111	Comparison of EXAFS foil spectra from around the world. Journal of Physics: Conference Series, 2009, 190, 012032.	0.3	11
112	Threeâ€dimensional textural and compositional analysis of particle tracks and fragmentation history in aerogel. Meteoritics and Planetary Science, 2009, 44, 1445-1463.	0.7	17
113	Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature, 2008, 455, 960-963.	13.7	180
114	Real-Time X-ray Absorption Spectroscopy of Uranium, Iron, and Manganese in Contaminated Sediments During Bioreduction. Environmental Science & Environ	4.6	21
115	Chemical composition and heterogeneity of Wild 2 cometary particles determined by synchrotron Xâ€ray fluorescence. Meteoritics and Planetary Science, 2008, 43, 187-213.	0.7	35
116	Films for Self-Detection and Decontamination. International Journal of Photoenergy, 2008, 2008, 1-6.	1.4	4
117	Fluorescence x-ray absorption fine structure studies of Fe-Ni-S and Fe-Ni-Si melts to 1600 K. Physical Review B, 2008, 77, .	1.1	3
118	Intermediate states of GeO2 glass under pressures up to 35 GPa. Physical Review B, 2007, 75, .	1.1	59
119	Chapter 3 Molecular Structure of Lead(II) Coprecipitated with Iron(III) Oxyhydroxide. Developments in Earth and Environmental Sciences, 2007, 7, 67-93.	0.1	0
120	Reduced-scan schemes for X-ray fluorescence computed tomography. , 2007, , .		0
121	Speciation and colloid transport of arsenic from mine tailings. Applied Geochemistry, 2007, 22, 1884-1898.	1.4	67
122	Externally-driven charge transfer in silicates at high pressure and temperature: A XANES study. Earth and Planetary Science Letters, 2007, 256, 314-327.	1.8	12
123	Reduced-Scan Schemes for X-Ray Fluorescence Computed Tomography. IEEE Transactions on Nuclear Science, 2007, 54, 1535-1542.	1.2	11
124	Long-Term Stability of Organic Carbon-Stimulated Chromate Reduction in Contaminated Soils and Its Relation to Manganese Redox Status. Environmental Science & Environmental Science & 2007, 41, 4326-4331.	4.6	25
125	Elemental Tomography of Cancer-Cell Spheroids Reveals Incomplete Uptake of Both Platinum(II) and Platinum(IV) Complexes. Journal of the American Chemical Society, 2007, 129, 13400-13401.	6.6	56
126	The effect of CO2on the speciation of bromine in low-temperature geological solutions: an XANES study. Journal of Synchrotron Radiation, 2007, 14, 219-226.	1.0	12

#	Article	IF	Citations
127	Comet 81P/Wild 2 Under a Microscope. Science, 2006, 314, 1711-1716.	6.0	848
128	Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust. Science, 2006, 314, 1731-1735.	6.0	200
129	Spatial and Temporal Variability of Arsenic Solid-State Speciation in Historically Lead Arsenate Contaminated Soils. Environmental Science & Environme	4.6	63
130	A XANES study of Cu speciation in high-temperature brines using synthetic fluid inclusions. American Mineralogist, 2006, 91, 1773-1782.	0.9	56
131	Plutonium Oxidation and Subsequent Reduction by Mn(IV) Minerals in Yucca Mountain Tuff. Environmental Science & Environmental	4.6	70
132	Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chemical Geology, 2006, 228, 97-111.	1.4	162
133	μ-XANES and μ-XRF Investigations of Metal Binding Mechanisms in Biosolids. Journal of Environmental Quality, 2006, 35, 342-351.	1.0	52
134	An experimental study of the oxidation state of vanadium in spinel and basaltic melt with implications for the origin of planetary basalt. American Mineralogist, 2006, 91, 1643-1656.	0.9	85
135	Application of a new vanadium valence oxybarometer to basaltic glasses from the Earth, Moon, and Mars. American Mineralogist, 2006, 91, 270-277.	0.9	61
136	Probing of bonding changes in B2O3 glasses at high pressure with inelastic X-rayÂscattering. Nature Materials, 2005, 4, 851-854.	13.3	178
137	ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 2005, 12, 537-541.	1.0	12,799
138	Uranium Reduction in Sediments under Diffusion-Limited Transport of Organic Carbon. Environmental Science & Environmental Scie	4.6	22
139	Application of Quantitative Fluorescence and Absorption-Edge Computed Microtomography to Image Metal Compartmentalization inAlyssum murale. Environmental Science & Environmen	4.6	185
140	Vanadium K edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry. Geochimica Et Cosmochimica Acta, 2005, 69, 2333-2348.	1.6	148
141	Strontium in coral aragonite: 3. Sr coordination and geochemistry in relation to skeletal architecture. Geochimica Et Cosmochimica Acta, 2005, 69, 3801-3811.	1.6	52
142	Mercury transformations in chemical agent simulant as characterized by X-ray absorption fine spectroscopy. Talanta, 2005, 67, 730-735.	2.9	3
143	Reconstruction of deglacial sea surface temperatures in the tropical Pacific from selective analysis of a fossil coral. Geophysical Research Letters, 2005, 32, .	1.5	31
144	The formation of sp3 bonding in compressed BN. Nature Materials, 2004, 3, 111-114.	13.3	162

#	Article	IF	CITATIONS
145	Microscale Distribution of Cesium Sorbed to Biotite and Muscovite. Environmental Science & Emp; Technology, 2004, 38, 1017-1023.	4.6	117
146	Structure and reactivity of the hydrated hematite (0001) surface. Surface Science, 2004, 573, 204-224.	0.8	279
147	Hexavalent Uranium Diffusion into Soils from Concentrated Acidic and Alkaline Solutions. Environmental Science & Environmental	4.6	24
148	Arsenic Sequestration by Ferric Iron Plaque on Cattail Roots. Environmental Science & Emp; Technology, 2004, 38, 6074-6077.	4.6	156
149	Bonding Changes in Compressed Superhard Graphite. Science, 2003, 302, 425-427.	6.0	610
150	Strontium in coral aragonite: 1. Characterization of Sr coordination by extended absorption X-ray fine structure. Geochimica Et Cosmochimica Acta, 2003, 67, 1197-1202.	1.6	28
151	XAFS study of local disorder in theaâ^'GdxSi1â^'xamorphous magnetic semiconductor. Physical Review B, 2003, 67, .	1.1	17
152	Surface oxidation of rhodonite: structural and chemical study by surface scattering and glancing incidence XAS techniques. Mineralogical Magazine, 2003, 67, 1205-1219.	0.6	13
153	Distribution of Chromium Contamination and Microbial Activity in Soil Aggregates. Journal of Environmental Quality, 2003, 32, 541.	1.0	8
154	Distribution of Chromium Contamination and Microbial Activity in Soil Aggregates. Journal of Environmental Quality, 2003, 32, 541-549.	1.0	41
155	Melting studies of indium: determination of the structure and density of melts at high pressures and high temperatures. Journal of Physics Condensed Matter, 2002, 14, 10533-10540.	0.7	21
156	Copper speciation in vapor-phase fluid inclusions from the Mole Granite, Australia. American Mineralogist, 2002, 87, 1360-1364.	0.9	55
157	Microfluorescence and Microtomography Analyses of Heterogeneous Earth and Environmental Materials. Reviews in Mineralogy and Geochemistry, 2002, 49, 429-483.	2.2	79
158	8. Microfluorescence and Microtomography Analyses of Heterogeneous Earth and Environmental Materials., 2002,, 429-484.		26
159	Strontium heterogeneity and speciation in coral aragonite: implications for the strontium paleothermometer. Geochimica Et Cosmochimica Acta, 2001, 65, 2669-2676.	1.6	62
160	Characterization of Fe Plaque and Associated Metals on the Roots of Mine-Waste Impacted Aquatic Plants. Environmental Science & Environmental Science	4.6	366
161	Chromium Diffusion and Reduction in Soil Aggregates. Environmental Science & E	4.6	70
162	Evidence of heterovalent europium in zoned Llallagua apatite using wavelength dispersive XANES. American Mineralogist, 2001, 86, 697-700.	0.9	54

#	Article	IF	CITATIONS
163	EXAFS analysis using FEFF and FEFFIT. Journal of Synchrotron Radiation, 2001, 8, 96-100.	1.0	549
164	A study of the coordination environment in aqueous cadmium–thiol complexes by EXAFS spectroscopy: experimentalvstheoretical standards. Journal of Synchrotron Radiation, 2001, 8, 669-671.	1.0	12
165	IFEFFITâ€: interactive XAFS analysis and FEFF fitting. Journal of Synchrotron Radiation, 2001, 8, 322-324.	1.0	2,695
166	Growth induced magnetic and chemical anisotropy in CoPt3alloy films. Journal of Synchrotron Radiation, 2001, 8, 880-882.	1.0	5
167	X-Ray Absorption Spectroscopy of Strontium(II) Coordination. Journal of Colloid and Interface Science, 2000, 222, 184-197.	5.0	84
168	Structure of the Hydrated -Al2O3 (0001) Surface. Science, 2000, 288, 1029-1033.	6.0	520
169	CHEMICAL SPECIATION OF GOLD IN ARSENOPYRITE. Canadian Mineralogist, 2000, 38, 1265-1281.	0.3	124
170	Combined EXAFS and first-principles theory study of Pb1â°'x GexTe. Physical Review B, 1999, 60, 14632-14642.	1.1	25
171	Micro-beam X-ray absorption and fluorescence spectroscopies at GSECARS: APS beamline 13ID. Journal of Synchrotron Radiation, 1999, 6, 353-355.	1.0	42
172	Micro-XAS studies with sorbed plutonium on tuff. Journal of Synchrotron Radiation, 1999, 6, 350-352.	1.0	20
173	Estimation of measurement uncertainties in XAFS data. Journal of Synchrotron Radiation, 1999, 6, 264-265.	1.0	46
174	A web-based library of XAFS data on model compounds. Journal of Synchrotron Radiation, 1999, 6, 276-277.	1.0	21
175	Inclusion of local structure effects in theoretical x-ray resonant scattering amplitudes usingab initiox-ray-absorption spectra calculations. Physical Review B, 1998, 58, 11215-11225.	1.1	109
176	<title>Dynamically figured Kirkpatrick Baez x-ray microfocusing optics</title> ., 1998,,.		108
177	Hydration of Bromide Ion in Supercritical Water:Â An X-ray Absorption Fine Structure and Molecular Dynamics Study. Journal of Physical Chemistry A, 1997, 101, 9632-9640.	1.1	89
178	XAFS Measurements of Rb-O Bonds in Ambient and Supercritical Water. European Physical Journal Special Topics, 1997, 7, C2-1007-C2-1008.	0.2	1
179	Separated Anomalous Scattering Amplitudes for the Inequivalent Cu Sites in YBa2Cu3O7-Í using DAFS. European Physical Journal Special Topics, 1997, 7, C2-745-C2-747.	0.2	1
180	Co-Refinement of Diffraction Anomalous Fine-Structure Data. European Physical Journal Special Topics, 1997, 7, C2-759-C2-760.	0.2	1

#	Article	IF	CITATIONS
181	Highâ€pressure, capillary xâ€ray absorption fine structure cell for studies of liquid and supercritical fluid solutions. Review of Scientific Instruments, 1996, 67, 2843-2845.	0.6	27
182	Rubidium ion hydration in ambient and supercritical water. Journal of Chemical Physics, 1996, 105, 2161-2166.	1.2	122
183	Single and multiple scattering XAFS in BaZrO3: A comparison between theory and experiment. Physica B: Condensed Matter, 1995, 208-209, 151-153.	1.3	19
184	Analysis of multiple-scattering XAFS data using theoretical standards. Physica B: Condensed Matter, 1995, 208-209, 154-156.	1.3	662
185	The UWXAFS analysis package: philosophy and details. Physica B: Condensed Matter, 1995, 208-209, 117-120.	1.3	734
186	Order disorder elements in antiferrodistortive phase transitions. Physica B: Condensed Matter, 1995, 208-209, 325-326.	1.3	5
187	Buckled crystalline structure of disordered mixed salts. Physica B: Condensed Matter, 1995, 208-209, 334-336.	1.3	11
188	The temperature dependence of substitutional impurities in Ag as measured by XAFS. Physica B: Condensed Matter, 1995, 208-209, 369-370.	1.3	3
189	Analysis of DAFS fine structure and background. Physica B: Condensed Matter, 1995, 208-209, 145-147.	1.3	18
190	Are Nanophase Grain Boundaries Anomalous?. Physical Review Letters, 1995, 75, 3874-3877.	2.9	111
191	Local structural distortions below and above the antiferrodistortive phase transition. Physical Review Letters, 1994, 72, 1352-1355.	2.9	47
192	Solving the structure of disordered mixed salts. Physical Review B, 1994, 49, 11662-11674.	1.1	58
193	Local Structural Distortions below and above the Antiferrodistortive Phase Transition. Physical Review Letters, 1994, 72, 3132-3132.	2.9	0
194	Structural disorder in oxygen perovskite crystals. Physica C: Superconductivity and Its Applications, 1993, 209, 55-58.	0.6	12
195	Near-edge x-ray-absorption fine structure of Pb: A comparison of theory and experiment. Physical Review B, 1993, 47, 14126-14131.	1.1	812
196	Multiple-scattering x-ray-absorption fine-structure analysis and thermal expansion of alkali halides. Physical Review B, 1993, 48, 12449-12458.	1.1	66
197	Anomalous temperature behavior of Sn impurities. Physical Review B, 1993, 47, 14032-14043.	1.1	13
198	Buckled crystalline structure of mixed ionic salts. Physical Review Letters, 1993, 71, 3485-3488.	2.9	54

#	Article	IF	CITATIONS
199	Anomalous Temperature Behavior of Impurities in Lead and Silver Hosts. Japanese Journal of Applied Physics, 1993, 32, 628.	0.8	1
200	An Improved Background Removal Method for XAFS. Japanese Journal of Applied Physics, 1993, 32, 125.	0.8	14
201	Cation Exchange in Smectites as a New Approach to Mineral Carbonation. Frontiers in Climate, 0, 4, .	1.3	9