Huangxu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9273513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyanion-type cathode materials for sodium-ion batteries. Chemical Society Reviews, 2020, 49, 2342-2377.	18.7	422
2	Rational Architecture Design Enables Superior Na Storage in Greener NASICONâ€Na ₄ MnV(PO ₄) ₃ Cathode. Advanced Energy Materials, 2018, 8, 1801418.	10.2	142
3	Highly efficient, fast and reversible multi-electron reaction of Na3MnTi(PO4)3 cathode for sodium-ion batteries. Energy Storage Materials, 2020, 26, 325-333.	9.5	128
4	Engineering of Polyanion Type Cathode Materials for Sodiumâ€lon Batteries: Toward Higher Energy/Power Density. Advanced Functional Materials, 2020, 30, 2000473.	7.8	117
5	Enhancing structural stability unto 4.5â€V of Ni-rich cathodes by tungsten-doping for lithium storage. Journal of Power Sources, 2019, 423, 246-254.	4.0	100
6	Full Activation of Mn ⁴⁺ /Mn ³⁺ Redox in Na ₄ MnCr(PO ₄) ₃ as a Highâ€Voltage and Highâ€Rate Cathode Material for Sodiumâ€Ion Batteries. Small, 2020, 16, e2001524.	5.2	98
7	Manganeseâ€Based Materials for Rechargeable Batteries beyond Lithiumâ€Ion. Advanced Energy Materials, 2021, 11, 2100867.	10.2	95
8	Phase Engineering of Nanomaterials for Clean Energy and Catalytic Applications. Advanced Energy Materials, 2020, 10, 2002019.	10.2	85
9	Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries. Energy Storage Materials, 2019, 16, 383-390.	9.5	79
10	Crystal Phase Control of Gold Nanomaterials by Wet-Chemical Synthesis. Accounts of Chemical Research, 2020, 53, 2106-2118.	7.6	75
11	Rationally Designed Sodium Chromium Vanadium Phosphate Cathodes with Multiâ€Electron Reaction for Fastâ€Charging Sodiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	71
12	Engineering 3D Well-Interconnected Na ₄ MnV(PO ₄) ₃ Facilitates Ultrafast and Ultrastable Sodium Storage. ACS Applied Materials & Interfaces, 2019, 11, 35746-35754.	4.0	65
13	Fabrication of Sb2S3 thin films by sputtering and post-annealing for solar cells. Ceramics International, 2019, 45, 3044-3051.	2.3	64
14	In-situ carbon-coated Na 2 FeP 2 O 7 anchored in three-dimensional reduced graphene oxide framework as a durable and high-rate sodium-ion battery cathode. Journal of Power Sources, 2017, 357, 164-172.	4.0	52
15	Triclinic Off-Stoichiometric Na _{3.12} Mn _{2.44} (P ₂ O ₇) ₂ /C Cathode Materials for High-Energy/Power Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 24564-24572.	4.0	41
16	N-Doped Carbon Nanotubes Decorated Na ₃ V ₂ (PO ₄) ₂ F ₃ as a Durable Ultrahigh-rate Cathode for Sodium Ion Batteries. ACS Applied Energy Materials, 2020, 3, 3845-3853.	2.5	39
17	Controllable lithium deposition behavior hollow of N, O co-doped carbon nanospheres for practical lithium metal batteries. Chemical Engineering Journal, 2021, 412, 128721.	6.6	34
18	All-climate and air-stable NASICON-Na2TiV(PO4)3 cathode with three-electron reaction toward high-performance sodium-ion batteries. Chemical Engineering Journal, 2022, 433, 133542.	6.6	27

Huangxu Li

#	Article	IF	CITATIONS
19	Antimonyâ€Doped Lithium Phosphate Artificial Solid Electrolyte Interphase for Dendriteâ€Free Lithiumâ€Metal Batteries. ChemElectroChem, 2019, 6, 1134-1138.	1.7	23
20	Heteroatom-Substituted P2–Na _{2/3} Ni _{1/4} Mg _{1/12} Mn _{2/3} O ₂ Cathode with {010} Exposing Facets Boost Anionic Activity and High-Rate Performance for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 18313-18323.	4.0	23
21	Stabilization of Multicationic Redox Chemistry in Polyanionic Cathode by Increasing Entropy. Advanced Science, 2022, 9, .	5.6	23
22	Enhanced Activity and Reversibility of Anionic Redox by Tuning Lithium Vacancies in Li-Rich Cathode Materials. ACS Applied Materials & Interfaces, 2021, 13, 39480-39490.	4.0	22
23	Scalable Synthesis of the Na ₂ FePO ₄ F Cathode Through an Economical and Reliable Approach for Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 11798-11806.	3.2	17
24	Robust Artificial Interphases Constructed by a Versatile Proteinâ€Based Binder for Highâ€Voltage Naâ€Ion Battery Cathodes. Advanced Materials, 2022, 34, e2202624.	11.1	17
25	Ironâ€Phosphateâ€Based Cathode Materials for Costâ€Effective Sodiumâ€lon Batteries: Development, Challenges, and Prospects. Advanced Materials Interfaces, 2022, 9, .	1.9	16
26	Thermodynamically Metal Atom Trapping in Van der Waals Layers Enabling Multifunctional 3D Carbon Network. Advanced Functional Materials, 2020, 30, 2002626.	7.8	15
27	Organic/inorganic anions coupling enabled reversible high-valent redox in vanadium-based polyanionic compound. Energy Storage Materials, 2022, 47, 526-533.	9.5	15
28	Ultra-High-Rate Na3V(PO3)3N Cathode with Superior Stability for Fast-Charging Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 10136-10144.	2.5	14
29	The biomimetic engineering of metal–organic frameworks with single-chiral-site precision for asymmetric hydrogenation. Journal of Materials Chemistry A, 2022, 10, 6463-6469.	5.2	14
30	Stabilizing Na metal anode with NaF interface on spent cathode carbon from aluminum electrolysis. Chemical Communications, 2021, 57, 7561-7564.	2.2	11
31	Dual carbon decorated Na3TiMn(PO4)3 as an advanced cathode for sodium-ion batteries. Ionics, 2020, 26, 3919-3927.	1.2	8
32	Boosting potassium-storage performance via confining highly dispersed molybdenum dioxide nanoparticles within N-doped porous carbon nano-octahedrons. Journal of Colloid and Interface Science, 2022, 607, 1109-1119.	5.0	4
33	Engineering Stress-Release Structures Based on Biological Swelling in Carbon Fibers for Stable Sodium Ion Storage. ACS Applied Energy Materials, 2022, 5, 6091-6099.	2.5	0