
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9273373/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 2009, 29, 185-212.                                                                                | 2.2 | 2,511     |
| 2  | Heat Stress in Wheat during Reproductive and Grain-Filling Phases. Critical Reviews in Plant Sciences, 2011, 30, 491-507.                                                                         | 2.7 | 686       |
| 3  | Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 2021, 211, 111887.                                                                        | 2.9 | 653       |
| 4  | Biochar application to low fertility soils: A review of current status, and future prospects.<br>Geoderma, 2019, 337, 536-554.                                                                    | 2.3 | 571       |
| 5  | Plant Drought Stress: Effects, Mechanisms and Management. , 2009, , 153-188.                                                                                                                      |     | 552       |
| 6  | Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the<br>Total Environment, 2020, 721, 137778.                                                       | 3.9 | 503       |
| 7  | Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 2015, 35, 461-481.                                                          | 2.2 | 459       |
| 8  | Rice direct seeding: Experiences, challenges and opportunities. Soil and Tillage Research, 2011, 111, 87-98.                                                                                      | 2.6 | 443       |
| 9  | Drought Stress in Wheat during Flowering and Grain-filling Periods. Critical Reviews in Plant<br>Sciences, 2014, 33, 331-349.                                                                     | 2.7 | 438       |
| 10 | Brassinolide Application Improves the Drought Tolerance in Maize Through Modulation of Enzymatic<br>Antioxidants and Leaf Gas Exchange. Journal of Agronomy and Crop Science, 2011, 197, 177-185. | 1.7 | 333       |
| 11 | Biochar for crop production: potential benefits and risks. Journal of Soils and Sediments, 2017, 17, 685-716.                                                                                     | 1.5 | 331       |
| 12 | The role of allelopathy in agricultural pest management. Pest Management Science, 2011, 67, 493-506.                                                                                              | 1.7 | 303       |
| 13 | Improving Drought Tolerance by Exogenous Application of Glycinebetaine and Salicylic Acid in<br>Sunflower. Journal of Agronomy and Crop Science, 2008, 194, 193-199.                              | 1.7 | 302       |
| 14 | Drought Stress in Grain Legumes during Reproduction and Grain Filling. Journal of Agronomy and<br>Crop Science, 2017, 203, 81-102.                                                                | 1.7 | 293       |
| 15 | Thermal Hardening: A New Seed Vigor Enhancement Tool in Rice. Journal of Integrative Plant Biology,<br>2005, 47, 187-193.                                                                         | 4.1 | 263       |
| 16 | Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management, 2019, 250, 109557.                                                                                         | 3.8 | 255       |
| 17 | Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiology and Biochemistry, 2019, 141, 353-369.                   | 2.8 | 246       |
| 18 | Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agricultural Water Management, 2018, 201, 152-166.                             | 2.4 | 242       |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Drought Stress in Plants: An Overview. , 2012, , 1-33.                                                                                                                                                    |     | 227       |
| 20 | Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiologiae Plantarum, 2009, 31, 937-945.                 | 1.0 | 224       |
| 21 | Physiological Role of Exogenously Applied Glycinebetaine to Improve Drought Tolerance in Fine Grain<br>Aromatic Rice ( <i>Oryza sativa</i> L.). Journal of Agronomy and Crop Science, 2008, 194, 325-333. | 1.7 | 222       |
| 22 | Micronutrient application through seed treatments: a review. Journal of Soil Science and Plant Nutrition, 2012, 12, 125-142.                                                                              | 1.7 | 214       |
| 23 | Priming of field-sown rice seed enhances germination, seedling establishment, allometry and yield.<br>Plant Growth Regulation, 2006, 49, 285-294.                                                         | 1.8 | 210       |
| 24 | Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. Science of the Total Environment, 2021, 754, 142188.                                                               | 3.9 | 193       |
| 25 | Crop yield and weed management in rainfed conservation agriculture. Soil and Tillage Research, 2011, 117, 172-183.                                                                                        | 2.6 | 187       |
| 26 | Chilling Tolerance in Hybrid Maize Induced by Seed Priming with Salicylic Acid. Journal of Agronomy and Crop Science, 2008, 194, 161-168.                                                                 | 1.7 | 182       |
| 27 | Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiology Ecology, 2016, 92, fiw112.                                                                                         | 1.3 | 179       |
| 28 | Potential Mechanisms of Abiotic Stress Tolerance in Crop Plants Induced by Thiourea. Frontiers in Plant Science, 2019, 10, 1336.                                                                          | 1.7 | 179       |
| 29 | Advances in Drought Resistance of Rice. Critical Reviews in Plant Sciences, 2009, 28, 199-217.                                                                                                            | 2.7 | 177       |
| 30 | Potassium Substitution by Sodium in Plants. Critical Reviews in Plant Sciences, 2011, 30, 401-413.                                                                                                        | 2.7 | 177       |
| 31 | Zinc nutrition in rice production systems: a review. Plant and Soil, 2012, 361, 203-226.                                                                                                                  | 1.8 | 175       |
| 32 | Improving the Drought Tolerance in Rice ( <i>Oryza sativa</i> L.) by Exogenous Application of Salicylic<br>Acid. Journal of Agronomy and Crop Science, 2009, 195, 237-246.                                | 1.7 | 172       |
| 33 | Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry, 2017, 118, 199-217.                                                                      | 2.8 | 171       |
| 34 | Enhancing the Performance of Direct Seeded Fine Rice by Seed Priming. Plant Production Science, 2006,<br>9, 446-456.                                                                                      | 0.9 | 169       |
| 35 | Methyl Jasmonate-Induced Alteration in Lipid Peroxidation, Antioxidative Defence System and Yield in Soybean Under Drought. Journal of Agronomy and Crop Science, 2011, 197, 296-301.                     | 1.7 | 162       |
| 36 | Physiological and biochemical aspects of pre-sowing seed treatments in fine rice (Oryza sativa L.). Seed Science and Technology, 2005, 33, 623-628.                                                       | 0.6 | 161       |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Chilling tolerance in maize: agronomic and physiological approaches. Crop and Pasture Science, 2009, 60, 501.                                                                                                  | 0.7 | 159       |
| 38 | Seed Priming Enhances the Performance of Late Sown Wheat ( <i>Triticum aestivum</i> L.) by Improving Chilling Tolerance. Journal of Agronomy and Crop Science, 2008, 194, 55-60.                               | 1.7 | 155       |
| 39 | Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions. Plant Growth Regulation, 2013, 69, 225-233.                        | 1.8 | 152       |
| 40 | Zinc nutrition in wheat-based cropping systems. Plant and Soil, 2018, 422, 283-315.                                                                                                                            | 1.8 | 152       |
| 41 | Thermal stress impacts reproductive development and grain yield in rice. Plant Physiology and Biochemistry, 2017, 115, 57-72.                                                                                  | 2.8 | 146       |
| 42 | Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to<br>Reproductive Growth Stage and Strategies to Improve Heat Tolerance. Frontiers in Plant Science, 2017,<br>8, 1658. | 1.7 | 146       |
| 43 | Improving Water Relations and Gas Exchange with Brassinosteroids in Rice under Drought Stress.<br>Journal of Agronomy and Crop Science, 2009, 195, 262-269.                                                    | 1.7 | 145       |
| 44 | Salt and drought stresses in safflower: a review. Agronomy for Sustainable Development, 2016, 36, 1.                                                                                                           | 2.2 | 143       |
| 45 | Seed Priming with Ascorbic Acid Improves Drought Resistance of Wheat. Journal of Agronomy and Crop Science, 2013, 199, 12-22.                                                                                  | 1.7 | 142       |
| 46 | Seed priming in field crops: potential benefits, adoption and challenges. Crop and Pasture Science, 2019, 70, 731.                                                                                             | 0.7 | 141       |
| 47 | Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi Journal of<br>Biological Sciences, 2019, 26, 614-624.                                                                   | 1.8 | 140       |
| 48 | Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. European Journal of Agronomy, 2018, 94, 98-107.                                               | 1.9 | 136       |
| 49 | Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agricultural Water Management, 2019, 221, 462-476.                  | 2.4 | 136       |
| 50 | Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation.<br>Journal of Hazardous Materials, 2010, 177, 384-389.                                                       | 6.5 | 135       |
| 51 | Improving the Performance of Wheat by Seed Priming Under Saline Conditions. Journal of Agronomy and Crop Science, 2012, 198, 38-45.                                                                            | 1.7 | 134       |
| 52 | Integrated phytobial heavy metal remediation strategies for a sustainable clean environment - A<br>review. Chemosphere, 2019, 217, 925-941.                                                                    | 4.2 | 132       |
| 53 | What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world's worst weeds. Planta, 2016, 244, 39-57.                                                             | 1.6 | 130       |
| 54 | Fulvic Acid Application Improves the Maize Performance under Well-watered and Drought Conditions.<br>Journal of Agronomy and Crop Science, 2011, 197, 409-417.                                                 | 1.7 | 128       |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Scientia Horticulturae, 2012, 140, 66-73.                                                                                                          | 1.7 | 128       |
| 56 | Exogenously Applied Nitric Oxide Enhances the Drought Tolerance in Fine Grain Aromatic Rice<br>( <i>Oryza sativa</i> L.). Journal of Agronomy and Crop Science, 2009, 195, 254-261.                                                                        | 1.7 | 122       |
| 57 | DROUGHT STRESS: Comparative Time Course Action of the Foliar Applied Glycinebetaine, Salicylic Acid,<br>Nitrous Oxide, Brassinosteroids and Spermine in Improving Drought Resistance of Rice. Journal of<br>Agronomy and Crop Science, 2010, 196, 336-345. | 1.7 | 117       |
| 58 | Cold Stress in Wheat: Plant Acclimation Responses and Management Strategies. Frontiers in Plant Science, 2021, 12, 676884.                                                                                                                                 | 1.7 | 105       |
| 59 | Broader leaves result in better performance of indica rice under drought stress. Journal of Plant<br>Physiology, 2010, 167, 1066-1075.                                                                                                                     | 1.6 | 103       |
| 60 | Role of proline and glycinebetaine pretreatments in improving heat tolerance of sprouting sugarcane<br>(Saccharum sp.) buds. Plant Growth Regulation, 2011, 65, 35-45.                                                                                     | 1.8 | 103       |
| 61 | Glycinebetaine Improves Chilling Tolerance in Hybrid Maize. Journal of Agronomy and Crop Science, 2008, 194, 152-160.                                                                                                                                      | 1.7 | 101       |
| 62 | Improving the performance of transplanted rice by seed priming. Plant Growth Regulation, 2007, 51, 129-137.                                                                                                                                                | 1.8 | 97        |
| 63 | A comprehensive characterisation of safflower oil for its potential applications as a bioactive food ingredient - A review. Trends in Food Science and Technology, 2017, 66, 176-186.                                                                      | 7.8 | 97        |
| 64 | Environmental side effects of the injudicious use of antimicrobials in the era of COVID-19. Science of the Total Environment, 2020, 745, 141053.                                                                                                           | 3.9 | 96        |
| 65 | Application of zinc improves the productivity and biofortification of fine grain aromatic rice grown in dry seeded and puddled transplanted production systems. Field Crops Research, 2018, 216, 53-62.                                                    | 2.3 | 93        |
| 66 | Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat. Plant Physiology and Biochemistry, 2017, 118, 362-369.                                                                                            | 2.8 | 92        |
| 67 | Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agricultural<br>Water Management, 2020, 241, 106363.                                                                                                                  | 2.4 | 88        |
| 68 | Nutrient homeostasis, metabolism of reserves, and seedling vigor as affected by seed priming in coarse rice. Canadian Journal of Botany, 2006, 84, 1196-1202.                                                                                              | 1.2 | 86        |
| 69 | Seed invigoration by osmohardening in coarse and fine rice. Seed Science and Technology, 2006, 34, 181-187.                                                                                                                                                | 0.6 | 86        |
| 70 | Physiological and agronomic approaches for improving water-use efficiency in crop plants.<br>Agricultural Water Management, 2019, 219, 95-108.                                                                                                             | 2.4 | 83        |
| 71 | Application of Micronutrients in Rice-Wheat Cropping System of South Asia. Rice Science, 2019, 26, 356-371.                                                                                                                                                | 1.7 | 82        |
| 72 | Suppression of cadmium concentration in wheat grains by silicon is related to its application rate and cadmium accumulating abilities of cultivars. Journal of the Science of Food and Agriculture, 2015, 95, 2467-2472.                                   | 1.7 | 81        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Seed priming improves chilling tolerance in chickpea by modulating germination metabolism,<br>trehalose accumulation and carbon assimilation. Plant Physiology and Biochemistry, 2017, 111, 274-283.                       | 2.8 | 77        |
| 74 | Rice–wheat cropping systems in South Asia: issues, options and opportunities. Crop and Pasture Science, 2019, 70, 395.                                                                                                     | 0.7 | 77        |
| 75 | Brassinosteroid seed priming with nitrogen supplementation improves salt tolerance in soybean.<br>Physiology and Molecular Biology of Plants, 2020, 26, 501-511.                                                           | 1.4 | 77        |
| 76 | Exogenous Glycinebetaine and Salicylic Acid Application Improves Water Relations, Allometry and<br>Quality of Hybrid Sunflower under Water Deficit Conditions. Journal of Agronomy and Crop Science,<br>2009, 195, 98-109. | 1.7 | 76        |
| 77 | Pseudomonas-aided zinc application improves the productivity and biofortification of bread wheat.<br>Crop and Pasture Science, 2018, 69, 659.                                                                              | 0.7 | 76        |
| 78 | Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant<br>Physiology and Biochemistry, 2022, 178, 55-69.                                                                                | 2.8 | 76        |
| 79 | Optimization of hydropriming techniques for rice seed invigoration. Seed Science and Technology, 2006, 34, 507-512.                                                                                                        | 0.6 | 74        |
| 80 | Mulching Improves Water Productivity, Yield and Quality of Fine Rice under Waterâ€saving Rice<br>Production Systems. Journal of Agronomy and Crop Science, 2015, 201, 389-400.                                             | 1.7 | 73        |
| 81 | Alternative control of wild oat and canary grass in wheat fields by allelopathic plant water extracts.<br>Agronomy for Sustainable Development, 2009, 29, 475-482.                                                         | 2.2 | 71        |
| 82 | Gas exchange and chlorophyll synthesis of maize cultivars are enhanced by exogenously-applied glycinebetaine under drought conditions. Plant, Soil and Environment, 2011, 57, 326-331.                                     | 1.0 | 71        |
| 83 | Heat stress in grain legumes during reproductive and grain-filling phases. Crop and Pasture Science, 2017, 68, 985.                                                                                                        | 0.7 | 70        |
| 84 | Strategies for reducing cadmium accumulation in rice grains. Journal of Cleaner Production, 2021, 286, 125557.                                                                                                             | 4.6 | 70        |
| 85 | Heat stress effects on the reproductive physiology and yield of wheat. Journal of Agronomy and Crop<br>Science, 2022, 208, 1-17.                                                                                           | 1.7 | 70        |
| 86 | Mulching Affects Soil Properties and Greenhouse Gas Emissions Under Longâ€Term Noâ€Till and<br>Ploughâ€Till Systems in Alfisol of Central Ohio. Land Degradation and Development, 2017, 28, 673-681.                       | 1.8 | 68        |
| 87 | Influence of Sesbania Brown Manuring and Rice Residue Mulch on Soil Health, Weeds and System<br>Productivity of Conservation Rice–Wheat Systems. Land Degradation and Development, 2017, 28,<br>1078-1090.                 | 1.8 | 66        |
| 88 | Terrestrial ecosystem functioning affected by agricultural management systems: A review. Soil and<br>Tillage Research, 2020, 196, 104464.                                                                                  | 2.6 | 66        |
| 89 | Impact of different crop rotations and tillage systems on weed infestation and productivity of bread wheat. Crop Protection, 2016, 89, 161-169.                                                                            | 1.0 | 65        |
| 90 | Influence of Heavy Metals on Seed Germination and Seedling Growth of Wheat, Pea, and Tomato.<br>Water, Air, and Soil Pollution, 2019, 230, 1.                                                                              | 1.1 | 65        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Weed dynamics and productivity of wheat in conventional and conservation rice-based cropping systems. Soil and Tillage Research, 2014, 141, 1-9.                                                                       | 2.6 | 64        |
| 92  | Thermal Stresses in Maize: Effects and Management Strategies. Plants, 2021, 10, 293.                                                                                                                                   | 1.6 | 64        |
| 93  | Farmyard manure alone and combined with immobilizing amendments reduced cadmium accumulation<br>in wheat and rice grains grown in field irrigated with raw effluents. Chemosphere, 2018, 199, 468-476.                 | 4.2 | 63        |
| 94  | Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt<br>stress in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 2018, 24, 239-249.                | 1.4 | 62        |
| 95  | Seed priming improves early seedling vigor, growth and productivity of spring maize. Journal of<br>Integrative Agriculture, 2015, 14, 1745-1754.                                                                       | 1.7 | 61        |
| 96  | Boron nutrition of rice in different production systems. A review. Agronomy for Sustainable<br>Development, 2018, 38, 1.                                                                                               | 2.2 | 61        |
| 97  | Existence of SARS-CoV-2 in Wastewater: Implications for Its Environmental Transmission in Developing<br>Communities. Environmental Science & Technology, 2020, 54, 7758-7759.                                          | 4.6 | 60        |
| 98  | Grain development in wheat under combined heat and drought stress: Plant responses and management. Environmental and Experimental Botany, 2021, 188, 104517.                                                           | 2.0 | 60        |
| 99  | Biochar application for the remediation of trace metals in contaminated soils: Implications for stress tolerance and crop production. Ecotoxicology and Environmental Safety, 2022, 230, 113165.                       | 2.9 | 58        |
| 100 | Silicon-induced changes in growth, ionic composition, water relations, chlorophyll contents and membrane permeability in two salt-stressed wheat genotypes. Archives of Agronomy and Soil Science, 2012, 58, 247-256.  | 1.3 | 57        |
| 101 | Seed priming with zinc improves the germination and early seedling growth of wheat. Seed Science and Technology, 2015, 43, 262-268.                                                                                    | 0.6 | 57        |
| 102 | Improving resistance against terminal drought in bread wheat by exogenous application of proline and gammaâ€aminobutyric acid. Journal of Agronomy and Crop Science, 2017, 203, 464-472.                               | 1.7 | 55        |
| 103 | Terminal drought and seed priming improves drought tolerance in wheat. Physiology and Molecular<br>Biology of Plants, 2018, 24, 845-856.                                                                               | 1.4 | 53        |
| 104 | Wild Oat (Avena Fatua L.) and Canary Grass (Phalaris Minor Ritz.) Management Through Allelopathy.<br>Journal of Plant Protection Research, 2010, 50, 41-44.                                                            | 1.0 | 52        |
| 105 | Application of zinc and biochar help to mitigate cadmium stress in bread wheat raised from seeds with high intrinsic zinc. Chemosphere, 2020, 260, 127652.                                                             | 4.2 | 52        |
| 106 | Zinc seed coating improves the growth, grain yield and grain biofortification of bread wheat. Acta<br>Physiologiae Plantarum, 2016, 38, 1.                                                                             | 1.0 | 50        |
| 107 | Crop diversification and saline water irrigation as potential strategies to save freshwater resources and reclamation of marginal soils—a review. Environmental Science and Pollution Research, 2020, 27, 28695-28729. | 2.7 | 50        |
| 108 | Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 2021, 214, 112112.                                          | 2.9 | 50        |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Potential Role of Plant Growth Regulators in Administering Crucial Processes Against Abiotic Stresses. Frontiers in Agronomy, 2021, 3, .                                                                                        | 1.5 | 50        |
| 110 | Soil organic carbon dynamics in wheat - Green gram crop rotation amended with vermicompost and<br>biochar in combination with inorganic fertilizers: A comparative study. Journal of Cleaner<br>Production, 2018, 201, 471-480. | 4.6 | 49        |
| 111 | Rice Seed Invigoration: A Review. Sustainable Agriculture Reviews, 2009, , 137-175.                                                                                                                                             | 0.6 | 48        |
| 112 | Desi chickpea genotypes tolerate drought stress better than kabuli types by modulating germination<br>metabolism, trehalose accumulation, and carbon assimilation. Plant Physiology and Biochemistry,<br>2018, 126, 47-54.      | 2.8 | 48        |
| 113 | Silicon nutrition mitigates salinity stress in maize by modulating ion accumulation, photosynthesis, and antioxidants. Photosynthetica, 2018, 56, 1047-1057.                                                                    | 0.9 | 47        |
| 114 | Seed priming improves growth of nursery seedlings and yield of transplanted rice. Archives of Agronomy and Soil Science, 2007, 53, 315-326.                                                                                     | 1.3 | 46        |
| 115 | Comparison of conventional and conservation rice-wheat systems in Punjab, Pakistan. Soil and Tillage<br>Research, 2017, 169, 35-43.                                                                                             | 2.6 | 45        |
| 116 | Impact of climate change on biology and management of wheat pests. Crop Protection, 2020, 137, 105304.                                                                                                                          | 1.0 | 45        |
| 117 | Evaluating the role of seed priming in improving drought tolerance of pigmented and nonâ€pigmented rice. Journal of Agronomy and Crop Science, 2017, 203, 269-276.                                                              | 1.7 | 44        |
| 118 | Impact of Abiotic Stresses on Grain Composition and Quality in Food Legumes. Journal of Agricultural and Food Chemistry, 2018, 66, 8887-8897.                                                                                   | 2.4 | 44        |
| 119 | Changes in Nutrient-Homeostasis and Reserves Metabolism During Rice Seed Priming: Consequences for Seedling Emergence and Growth. Agricultural Sciences in China, 2010, 9, 191-198.                                             | 0.6 | 43        |
| 120 | Sulphur application improves the growth, seed yield and oil quality of canola. Acta Physiologiae<br>Plantarum, 2013, 35, 2999-3006.                                                                                             | 1.0 | 43        |
| 121 | Improving the Productivity of Bread Wheat by Good Management Practices under Terminal Drought.<br>Journal of Agronomy and Crop Science, 2015, 201, 173-188.                                                                     | 1.7 | 43        |
| 122 | Adequate zinc nutrition improves the tolerance against drought and heat stresses in chickpea. Plant<br>Physiology and Biochemistry, 2019, 143, 11-18.                                                                           | 2.8 | 43        |
| 123 | High intrinsic seed Zn concentration improves abiotic stress tolerance in wheat. Plant and Soil, 2019, 437, 195-213.                                                                                                            | 1.8 | 43        |
| 124 | Exploring the Role of Calcium to Improve Chilling Tolerance in Hybrid Maize. Journal of Agronomy and Crop Science, 2008, 194, 350-359.                                                                                          | 1.7 | 42        |
| 125 | Implications of Potential Allelopathic Crops in Agricultural Systems. , 2013, , 349-385.                                                                                                                                        |     | 42        |
| 126 | Agronomic Biofortification of Zinc in Pakistan: Status, Benefits, and Constraints. Frontiers in<br>Sustainable Food Systems, 2020, 4, .                                                                                         | 1.8 | 42        |

| #   | Article                                                                                                                                                                                                                                   | IF         | CITATIONS   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
| 127 | Comparison of conventional puddling and dry tillage in rice–wheat system. Paddy and Water<br>Environment, 2008, 6, 397-404.                                                                                                               | 1.0        | 41          |
| 128 | Economic assessment of different mulches in conventional and water-saving rice production systems.<br>Environmental Science and Pollution Research, 2016, 23, 9156-9163.                                                                  | 2.7        | 41          |
| 129 | Zinc nutrition in chickpea (Cicer arietinum): a review. Crop and Pasture Science, 2020, 71, 199.                                                                                                                                          | 0.7        | 41          |
| 130 | Seed Priming with Polyamines Improves the Germination and Early Seedling Growth in Fine Rice.<br>Journal of New Seeds, 2008, 9, 145-155.                                                                                                  | 0.3        | 40          |
| 131 | Reduced Herbicide Doses Used Together with Allelopathic Sorghum and Sunflower Water Extracts for Weed Control in Wheat. Journal of Plant Protection Research, 2012, 52, 281-285.                                                          | 1.0        | 40          |
| 132 | Weed spectrum in different wheat-based cropping systems under conservation and conventional tillage practices in Punjab, Pakistan. Soil and Tillage Research, 2016, 163, 71-79.                                                           | 2.6        | 40          |
| 133 | Impact of invasive plant species on the livelihoods of farming households: evidence from Parthenium<br>hysterophorus invasion in rural Punjab, Pakistan. Biological Invasions, 2019, 21, 3285-3304.                                       | 1.2        | 40          |
| 134 | Improving the productivity, profitability and grain quality of <i>kabuli</i> chickpea with<br>co-application of zinc and endophyte bacteria <i>Enterobacter</i> sp. MN17. Archives of Agronomy and<br>Soil Science, 2020, 66, 897-912.    | 1.3        | 40          |
| 135 | Priming enhances germination of spring maize (Zea mays L.) under cool conditions. Seed Science and Technology, 2008, 36, 497-503.                                                                                                         | 0.6        | 39          |
| 136 | Categorization of wheat genotypes for phosphorus efficiency. PLoS ONE, 2018, 13, e0205471.                                                                                                                                                | 1.1        | 39          |
| 137 | Application of bispyribacâ€sodium provides effective weed control in directâ€planted rice on a sandy loam<br>soil. Weed Biology and Management, 2012, 12, 136-145.                                                                        | 0.6        | 38          |
| 138 | Physiological and Yield Responses of Faba bean ( <i>Vicia faba</i> L.) to Drought Stress in Managed and Open Field Environments. Journal of Agronomy and Crop Science, 2015, 201, 280-287.                                                | 1.7        | 38          |
| 139 | Seed priming improves stand establishment and productivity of no till wheat grown after direct seeded aerobic and transplanted flooded rice. European Journal of Agronomy, 2016, 76, 130-137.                                             | 1.9        | 38          |
| 140 | Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential.<br>Journal of the Science of Food and Agriculture, 2018, 98, 4824-4836.                                                               | 1.7        | 38          |
| 141 | BORON NUTRIPRIMING IMPROVES THE GERMINATION AND EARLY SEEDLING GROWTH OF RICE ( <i>ORYZA) Tj E</i>                                                                                                                                        | TQ9,1 1 0. | 784314 rg8T |
| 142 | Boron Application Improves Growth, Yield and Net Economic Return of Rice. Rice Science, 2012, 19, 259-262.                                                                                                                                | 1.7        | 36          |
| 143 | Foliageâ€∎pplied sodium nitroprusside and hydrogen peroxide improves resistance against terminal drought in bread wheat. Journal of Agronomy and Crop Science, 2017, 203, 473-482.                                                        | 1.7        | 36          |
| 144 | Zinc Application in Combination with Zinc Solubilizing Enterobacter sp. MN17 Improved Productivity,<br>Profitability, Zinc Efficiency, and Quality of Desi Chickpea. Journal of Soil Science and Plant Nutrition,<br>2020, 20, 2133-2144. | 1.7        | 36          |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Optimizing zinc seed priming for improving the growth, yield and grain biofortification of mungbean<br>( <i>Vigna radiata</i> (L.) wilczek). Journal of Plant Nutrition, 2020, 43, 1438-1446.  | 0.9 | 36        |
| 146 | White Mustard (Sinapis alba L.) Oil in Biodiesel Production: A Review. Frontiers in Plant Science, 2020, 11, 299.                                                                              | 1.7 | 36        |
| 147 | Hypoxia and Anoxia Stress: Plant responses and tolerance mechanisms. Journal of Agronomy and Crop<br>Science, 2021, 207, 249-284.                                                              | 1.7 | 36        |
| 148 | Selenium treated foliage and biochar treated soil for improved lettuce (Lactuca sativa L.) growth in Cd-polluted soil. Journal of Cleaner Production, 2022, 335, 130267.                       | 4.6 | 36        |
| 149 | Rice seed invigoration by hormonal and vitamin priming. Seed Science and Technology, 2006, 34, 753-758.                                                                                        | 0.6 | 35        |
| 150 | Seed pretreatment with hydrogen peroxide improves heat tolerance in maize at germination and seedling growth stages. Seed Science and Technology, 2008, 36, 633-645.                           | 0.6 | 35        |
| 151 | Improvement of Pisum sativum salt stress tolerance by bio-priming their seeds using Typha angustifolia<br>leaves aqueous extract. South African Journal of Botany, 2016, 105, 240-250.         | 1.2 | 35        |
| 152 | Effects, tolerance mechanisms and management of salt stress in lucerne (Medicago sativa). Crop and<br>Pasture Science, 2020, 71, 411.                                                          | 0.7 | 35        |
| 153 | Conservation Agriculture: Concepts, Brief History, and Impacts on Agricultural Systems. , 2015, , 3-17.                                                                                        |     | 35        |
| 154 | Rapid injuries of high temperature in plants. Journal of Plant Biology, 2017, 60, 298-305.                                                                                                     | 0.9 | 34        |
| 155 | Using Biotechnology-Led Approaches to Uplift Cereal and Food Legume Yields in Dryland Environments. Frontiers in Plant Science, 2018, 9, 1249.                                                 | 1.7 | 34        |
| 156 | Integrated use of seed priming and biochar improves salt tolerance in cowpea. Scientia Horticulturae, 2020, 272, 109507.                                                                       | 1.7 | 34        |
| 157 | Foliar nutrition: Potential and challenges under multifaceted agriculture. Environmental and Experimental Botany, 2022, 200, 104909.                                                           | 2.0 | 34        |
| 158 | Comparative efficacy of surface drying and re-drying seed priming in rice: changes in emergence, seedling growth and associated metabolic events. Paddy and Water Environment, 2010, 8, 15-22. | 1.0 | 33        |
| 159 | Application of Allelopathy in Crop Production: Success Story from Pakistan. , 2013, , 113-143.                                                                                                 |     | 32        |
| 160 | WATER SAVING, WATER PRODUCTIVITY AND YIELD OUTPUTS OF FINE-GRAIN RICE CULTIVARS UNDER CONVENTIONAL AND WATER-SAVING RICE PRODUCTION SYSTEMS. Experimental Agriculture, 2015, 51, 567-581.      | 0.4 | 32        |
| 161 | Morphological, physiological and biochemical aspects of osmoprimingâ€induced drought tolerance in<br>lentil. Journal of Agronomy and Crop Science, 2020, 206, 176-186.                         | 1.7 | 32        |
| 162 | Quantitative Trait Loci Mapping for Leaf Length and Leaf Width in Rice cv. IR64 Derived Lines. Journal of<br>Integrative Plant Biology, 2010, 52, 578-584.                                     | 4.1 | 31        |

| #   | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Evaluating surface drying and re-drying for wheat seed priming with polyamines: effects on<br>emergence, early seedling growth and starch metabolism. Acta Physiologiae Plantarum, 2011, 33,<br>1707-1713.                     | 1.0 | 31        |
| 164 | Seed priming with boron improves growth and yield of fine grain aromatic rice. Plant Growth Regulation, 2012, 68, 189-201.                                                                                                     | 1.8 | 31        |
| 165 | Influence of boron nutrition on the rice productivity, kernel quality and biofortification in different production systems. Field Crops Research, 2014, 169, 123-131.                                                          | 2.3 | 31        |
| 166 | Effect of humic and fulvic acid transformation on cadmium availability to wheat cultivars in sewage sludge amended soil. Environmental Science and Pollution Research, 2018, 25, 16071-16079.                                  | 2.7 | 31        |
| 167 | Application of natural plant extracts improves the tolerance against combined terminal heat and drought stresses in bread wheat. Journal of Agronomy and Crop Science, 2017, 203, 528-538.                                     | 1.7 | 30        |
| 168 | MANGANESE NUTRITION IMPROVES THE PRODUCTIVITY AND GRAIN BIOFORTIFICATION OF BREAD WHEAT IN ALKALINE CALCAREOUS SOIL. Experimental Agriculture, 2018, 54, 744-754.                                                              | 0.4 | 30        |
| 169 | Proline accumulation, ion homeostasis and antioxidant defence system alleviate salt stress and protect carbon assimilation in bread wheat genotypes of Omani origin. Environmental and Experimental Botany, 2022, 193, 104687. | 2.0 | 30        |
| 170 | Economic assessment of conventional and conservation tillage practices in different wheat-based cropping systems of Punjab, Pakistan. Environmental Science and Pollution Research, 2017, 24, 24634-24643.                     | 2.7 | 29        |
| 171 | DIFFERENTIAL RESPONSE OF MAIZE AND MUNGBEAN TO TOBACCO ALLELOPATHY. Experimental Agriculture, 2014, 50, 611-624.                                                                                                               | 0.4 | 28        |
| 172 | Supraâ€optimal growth temperature exacerbates adverse effects of low Zn supply in wheat. Journal of<br>Plant Nutrition and Soil Science, 2019, 182, 656-666.                                                                   | 1.1 | 28        |
| 173 | Effect of crop residues applied isolated or in combination on the germination and seedling growth of horse purslane (Trianthema portulacastrum). Planta Daninha, 2011, 29, 121-128.                                            | 0.5 | 27        |
| 174 | Improving the performance of short-duration basmati rice in water-saving production systems by boron nutrition. Annals of Applied Biology, 2016, 168, 19-28.                                                                   | 1.3 | 26        |
| 175 | Thiourea application improves heat tolerance in camelina (Camelina sativa L. Crantz) by modulating gas exchange, antioxidant defense and osmoprotection. Industrial Crops and Products, 2021, 170, 113826.                     | 2.5 | 26        |
| 176 | Zinc Nutrition for Improving the Productivity and Grain Biofortification of Mungbean. Journal of<br>Soil Science and Plant Nutrition, 2020, 20, 1321-1335.                                                                     | 1.7 | 25        |
| 177 | Physiological and Molecular Characterization of Faba bean ( <i>Vicia faba</i> L.) Genotypes for Adaptation to Drought Stress. Journal of Agronomy and Crop Science, 2015, 201, 401-409.                                        | 1.7 | 24        |
| 178 | Role of melatonin seed priming on antioxidant enzymes and biochemical responses of Carthamus<br>tinctorius L. under drought stress conditions. Plant Stress, 2021, 2, 100023.                                                  | 2.7 | 24        |
| 179 | Responses and Management of Heat Stress in Plants. , 2012, , 135-157.                                                                                                                                                          |     | 23        |
| 180 | ROLE OF BORON IN LEAF ELONGATION AND TILLERING DYNAMICS IN FINE-GRAIN AROMATIC RICE. Journal of Plant Nutrition, 2013, 36, 42-54.                                                                                              | 0.9 | 23        |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Influence of Seed Priming on Performance and Water Productivity of Direct Seeded Rice in<br>Alternating Wetting and Drying. Rice Science, 2015, 22, 189-196.                                                                                         | 1.7 | 23        |
| 182 | Productivity and profitability of cotton–wheat system as influenced by relay intercropping of insect resistant transgenic cotton in bed planted wheat. European Journal of Agronomy, 2016, 75, 33-41.                                                | 1.9 | 23        |
| 183 | Influence of seed priming techniques on grain yield and economic returns of bread wheat planted at different spacings. Crop and Pasture Science, 2020, 71, 725.                                                                                      | 0.7 | 23        |
| 184 | Boron Seed Priming Improves the Seedling Emergence, Growth, Grain Yield and Grain Biofortification of Bread Wheat. International Journal of Agriculture and Biology, 2017, 19, 177-182.                                                              | 0.2 | 23        |
| 185 | Activation of Antioxidant System by KCl Improves the Chilling Tolerance in Hybrid Maize. Journal of Agronomy and Crop Science, 2008, 194, 438-448.                                                                                                   | 1.7 | 22        |
| 186 | Using Sorghum to suppress weeds in dry seeded aerobic and puddled transplanted rice. Field Crops<br>Research, 2017, 214, 211-218.                                                                                                                    | 2.3 | 22        |
| 187 | Influence of different sewage sludges and composts on growth, yield, and trace elements accumulation in rice and wheat. Land Degradation and Development, 2018, 29, 1343-1352.                                                                       | 1.8 | 22        |
| 188 | Chemical fractionation and risk assessment of trace elements in sewage sludge generated from various states of Pakistan. Environmental Science and Pollution Research, 2020, 27, 39742-39752.                                                        | 2.7 | 22        |
| 189 | Allelopathy and Abiotic Stress Interaction in Crop Plants. , 2013, , 451-468.                                                                                                                                                                        |     | 22        |
| 190 | Enhancing the performance of transplanted coarse rice by seed priming. Paddy and Water<br>Environment, 2009, 7, 55-63.                                                                                                                               | 1.0 | 21        |
| 191 | VARIATION IN PHOSPHORUS EFFICIENCY AMONG <i>BRASSICA</i> CULTIVARS I: INTERNAL UTILIZATION AND PHOSPHORUS REMOBILIZATION. Journal of Plant Nutrition, 2011, 34, 2006-2017.                                                                           | 0.9 | 21        |
| 192 | Allelopathic Activity of Crop Residue Incorporation Alone or Mixed Against Rice and its Associated<br>Grass Weed Jungle Rice (Echinochloa colona [L.] Link). Chilean Journal of Agricultural Research, 2011,<br>71, 418-423.                         | 0.4 | 21        |
| 193 | Boron improves productivity and profitability of bread wheat under zero and plough tillage on alkaline calcareous soil. Field Crops Research, 2019, 239, 1-9.                                                                                        | 2.3 | 21        |
| 194 | Impact of Different Barley-Based Cropping Systems on Soil Physicochemical Properties and Barley Growth under Conventional and Conservation Tillage Systems. Agronomy, 2021, 11, 8.                                                                   | 1.3 | 21        |
| 195 | Optimizing row spacing in wheat cultivars differing in tillering and stature for higher productivity.<br>Archives of Agronomy and Soil Science, 2013, 59, 1457-1470.                                                                                 | 1.3 | 20        |
| 196 | Weed management in resource conservation production systems in Pakistan. Crop Protection, 2016, 85, 89-103.                                                                                                                                          | 1.0 | 20        |
| 197 | Morphological and chromosomal abnormalities in gamma radiation-induced mutagenized faba bean genotypes. International Journal of Radiation Biology, 2018, 94, 174-185.                                                                               | 1.0 | 20        |
| 198 | Influence of nitrogen application on dry biomass allocation and translocation in two maize varieties<br>under short pre-anthesis and prolonged bracketing flowering periods of drought. Archives of<br>Agronomy and Soil Science, 2019, 65, 928-944. | 1.3 | 20        |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Influence of biochar and organic soil amendments on bioavailability and immobilization of copper and<br>lead to common cocklebur in acidic sandy loam soil. Journal of Environmental Chemical Engineering,<br>2020, 8, 104480.                      | 3.3 | 20        |
| 200 | Pulses Production in Pakistan: Status, Constraints and Opportunities. International Journal of Plant<br>Production, 2020, 14, 549-569.                                                                                                              | 1.0 | 20        |
| 201 | Maize–sorghum intercropping systems for purple nutsedge management. Archives of Agronomy and<br>Soil Science, 2013, 59, 1279-1288.                                                                                                                  | 1.3 | 19        |
| 202 | Seed priming with sorghum water extract and benzyl amino purine along with surfactant improves germination metabolism and early seedling growth of wheat. Archives of Agronomy and Soil Science, 2017, 63, 319-329.                                 | 1.3 | 19        |
| 203 | Morphological, physiological and biochemical aspects of zinc seed priming-induced drought<br>tolerance in faba bean. Scientia Horticulturae, 2021, 281, 109894.                                                                                     | 1.7 | 19        |
| 204 | Zinc biofortification potential of diverse mungbean [Vigna radiata (L.) Wilczek] genotypes under field conditions. PLoS ONE, 2021, 16, e0253085.                                                                                                    | 1.1 | 19        |
| 205 | Influence of Various Tillage Practices on Soil Physical Properties and Wheat Performance in Different<br>Wheat-based Cropping Systems. International Journal of Agriculture and Biology, 2016, 18, 821-829.                                         | 0.2 | 19        |
| 206 | Influence of planting methods on root development, crop productivity and water use efficiency in maize hybrids. Chilean Journal of Agricultural Research, 2012, 72, 556-563.                                                                        | 0.4 | 19        |
| 207 | Increasing sustainability for rice production systems. Journal of Cereal Science, 2022, 103, 103400.                                                                                                                                                | 1.8 | 19        |
| 208 | Mulberry leaf water extract inhibits bermudagrass and promotes wheat growth. Weed Biology and Management, 2010, 10, 234-240.                                                                                                                        | 0.6 | 18        |
| 209 | Foliar Application of Glycinebetaine and Salicylic Acid Improves Growth, Yield and Water Productivity<br>of Hybrid Sunflower Planted by Different Sowing Methods. Journal of Agronomy and Crop Science,<br>2010, 196, 136-145.                      | 1.7 | 18        |
| 210 | Exogenous application of allelopathic water extracts helps improving tolerance against terminal heat<br>and drought stresses in bread wheat ( <i>Triticum aestivum</i> L. Em. Thell.). Journal of Agronomy and<br>Crop Science, 2018, 204, 298-312. | 1.7 | 18        |
| 211 | Evaluation of physiological markers for assessing drought tolerance and yield potential in bread wheat. Physiology and Molecular Biology of Plants, 2019, 25, 1163-1174.                                                                            | 1.4 | 18        |
| 212 | Influence of Different Organic Manures and Their Combinations on Productivity and Quality of Bread<br>Wheat. Journal of Soil Science and Plant Nutrition, 2020, 20, 1949-1960.                                                                      | 1.7 | 18        |
| 213 | Exposure to SARS-CoV-2 in Aerosolized Wastewater: Toilet Flushing, Wastewater Treatment, and Sprinkler Irrigation. Water (Switzerland), 2021, 13, 436.                                                                                              | 1.2 | 18        |
| 214 | The challenge of drought stress for grain legumes and options for improvement. Archives of Agronomy and Soil Science, 2022, 68, 1601-1618.                                                                                                          | 1.3 | 18        |
| 215 | Thermal Stress Impacts on Reproductive Development and Grain Yield in Grain Legumes. Journal of Plant Biology, 2018, 61, 265-291.                                                                                                                   | 0.9 | 17        |
| 216 | Biochemical and molecular characterization of cowpea landraces using seed storage proteins and SRAP marker patterns. Saudi Journal of Biological Sciences, 2019, 26, 74-82.                                                                         | 1.8 | 17        |

| #   | Article                                                                                                                                                                                                                        | IF               | CITATIONS     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
| 217 | Influence of Zn nutrition on the productivity, grain quality and grain biofortification of wheat under conventional and conservation rice–wheat cropping systems. Archives of Agronomy and Soil Science, 2020, 66, 1042-1057.  | 1.3              | 17            |
| 218 | Rapid delivery systems for future food security. Nature Biotechnology, 2021, 39, 1179-1181.                                                                                                                                    | 9.4              | 17            |
| 219 | Shading under drought stress during grain filling attenuates photosynthesis, grain yield and quality<br>of winter wheat in the Loess Plateau of China. Journal of Agronomy and Crop Science, 2022, 208,<br>255-263.            | 1.7              | 17            |
| 220 | Rice production systems and grain quality. Journal of Cereal Science, 2022, 105, 103463.                                                                                                                                       | 1.8              | 17            |
| 221 | Phosphorus Deficiency in Plants: Responses, Adaptive Mechanisms, and Signaling. , 2014, , 133-148.                                                                                                                             |                  | 16            |
| 222 | Zinc seed treatments improve productivity, quality and grain biofortification of desi and kabuli chickpea (Cicer arietinum). Crop and Pasture Science, 2020, 71, 668.                                                          | 0.7              | 16            |
| 223 | Integration of Seed Priming and Biochar Application Improves Drought Tolerance in Cowpea. Journal of Plant Growth Regulation, 2021, 40, 1972-1980.                                                                             | 2.8              | 16            |
| 224 | Exogenous glycinebetaine application improves yield under water-limited conditions in hybrid sunflower. Archives of Agronomy and Soil Science, 2008, 54, 557-567.                                                              | 1.3              | 15            |
| 225 | Role of Allelopathy in Weed Management. , 2014, , 39-61.                                                                                                                                                                       |                  | 15            |
| 226 | Changes in physiological, biochemical and antioxidant enzyme activities of green gram (Vigna radiata) Tj ETQqQ                                                                                                                 | 00 rgBT /<br>1.9 | Overlock 10 T |
| 227 | Surfactant enhanced pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea).<br>Environmental Science and Pollution Research, 2016, 23, 18129-18136.                                                        | 2.7              | 15            |
| 228 | Wheat Genotypes with Higher Intercellular CO2 Concentration, Rate of Photosynthesis, and<br>Antioxidant Potential Can Better Tolerate Drought Stress. Journal of Soil Science and Plant<br>Nutrition, 2021, 21, 2378-2391.     | 1.7              | 15            |
| 229 | Thiourea Application Increases Seed and Oil Yields in Camelina Under Heat Stress by Modulating the<br>Plant Water Relations and Antioxidant Defense System. Journal of Soil Science and Plant Nutrition,<br>2023, 23, 290-307. | 1.7              | 15            |
| 230 | Cadmium bioavailability in acidic soils under bean cultivation: role of soil additives. International<br>Journal of Environmental Science and Technology, 2020, 17, 153-160.                                                   | 1.8              | 14            |
| 231 | Using sorghum to suppress weeds in autumn planted maize. Crop Protection, 2020, 133, 105162.                                                                                                                                   | 1.0              | 14            |
|     |                                                                                                                                                                                                                                |                  |               |
| 232 | Influence of water management techniques on milling recovery, grain quality and mercury uptake in<br>different rice production systems. Agricultural Water Management, 2021, 243, 106500.                                      | 2.4              | 14            |

<sup>234</sup>Integration of pre-sowing soaking, chilling and heating treatments for vigour enhancement in rice<br/>(Oryza sativa L.). Seed Science and Technology, 2006, 34, 499-506.0.613

| #   | Article                                                                                                                                                                                                                                   | IF        | CITATIONS           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|
| 235 | Anthocyanin production in the hyperaccumulator plant Noccaea caerulescens in response to herbivory and zinc stress. Acta Physiologiae Plantarum, 2015, 37, 1.                                                                             | 1.0       | 13                  |
| 236 | Manganese nutrition improves the productivity and grain biofortification of fine grain aromatic rice in conventional and conservation production systems. Paddy and Water Environment, 2017, 15, 563-572.                                 | 1.0       | 13                  |
| 237 | Effect of high temperature on yield associated parameters and vascular bundle development in five potato cultivars. Scientia Horticulturae, 2017, 225, 134-140.                                                                           | 1.7       | 13                  |
| 238 | Removing Hexavalent Chromium by Nano Zero-Valent Iron Loaded on Attapulgite. Water, Air, and Soil<br>Pollution, 2022, 233, 1.                                                                                                             | 1.1       | 13                  |
| 239 | Evaluation of seed vigour enhancement techniques on physiological and biochemical basis in coarse<br>rice (Oryza sativa L.). Seed Science and Technology, 2006, 34, 719-728.                                                              | 0.6       | 12                  |
| 240 | Growth Stimulating Influence of Foliage Applied Brassica Water Extracts on Morphological and Yield<br>Attributes of Bread Wheat under Different Fertilizer Regimes. Planta Daninha, 2018, 36, .                                           | 0.5       | 12                  |
| 241 | Chemical control of parthenium weed (Parthenium hysterophorus L.) in two contrasting cultivars of rice under direct-seeded conditions. Crop Protection, 2019, 117, 26-36.                                                                 | 1.0       | 12                  |
| 242 | Weed flora composition of different barleyâ€based cropping systems under conventional and conservation tillage practices. Phytoparasitica, 2021, 49, 751-769.                                                                             | 0.6       | 12                  |
| 243 | Agricultural Innovation and Sustainable Development: A Case Study of Rice–Wheat Cropping Systems in South Asia. Sustainability, 2021, 13, 1965.                                                                                           | 1.6       | 12                  |
| 244 | The impact of different crop sequences on weed infestation and productivity of barley (Hordeum) Tj ETQq0 0 0 r                                                                                                                            | gBT /Over | lock 10 Tf 50<br>12 |
| 245 | Micronutrient seed priming improves stand establishment, grain yield and biofortification of bread wheat. Crop and Pasture Science, 2018, 69, 479.                                                                                        | 0.7       | 11                  |
| 246 | Seed Priming with Micronutrients for Improving the Quality and Yield of Hybrid Maize. Gesunde Pflanzen, 2019, 71, 37-44.                                                                                                                  | 1.7       | 11                  |
| 247 | Research and Developmental Issues in Dryland Agriculture. , 2016, , 31-46.                                                                                                                                                                |           | 11                  |
| 248 | Thiourea Application Improves the Growth and Seed and Oil Yields in Canola by Modulating Gas<br>Exchange, Antioxidant Defense, and Osmoprotection Under Heat Stress. Journal of Soil Science and<br>Plant Nutrition, 2022, 22, 3655-3666. | 1.7       | 11                  |
| 249 | Conservation Agriculture in South Asia. , 2015, , 249-283.                                                                                                                                                                                |           | 10                  |
| 250 | Management strategies for sustainable yield of potato crop under high temperature. Archives of<br>Agronomy and Soil Science, 2017, 63, 276-287.                                                                                           | 1.3       | 10                  |
| 251 | Characterization and quantification of γ-oryzanol in Korean rice landraces. Journal of Cereal Science, 2019, 88, 150-156.                                                                                                                 | 1.8       | 10                  |
| 252 | Influence of Nitrogen Fertilization Pattern on Productivity, Nitrogen Use Efficiencies, and<br>Profitability in Different Rice Production Systems. Journal of Soil Science and Plant Nutrition, 2021,<br>21, 145-161.                     | 1.7       | 10                  |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Effect of different densities of parthenium weed ( <i>Parthenium hysterophorus</i> L.) on the performance of direct-seeded rice under aerobic conditions. Archives of Agronomy and Soil Science, 2019, 65, 796-808.             | 1.3 | 9         |
| 254 | Evaluation of indigenous Omani alfalfa landraces for morphology and forage yield under different<br>levels of salt stress. Physiology and Molecular Biology of Plants, 2020, 26, 1763-1772.                                     | 1.4 | 9         |
| 255 | Sowing Date and Hybrid Choice Matters Production of Maize–Maize System. International Journal of Plant Production, 2020, 14, 583-595.                                                                                           | 1.0 | 9         |
| 256 | Sustainable Soil Management for Food Security in South Asia. Journal of Soil Science and Plant Nutrition, 2021, 21, 258-275.                                                                                                    | 1.7 | 9         |
| 257 | Biochemical responses of thiourea in ameliorating high temperature stress by enhancing antioxidant<br>defense system in wheat. Russian Journal of Plant Physiology, 2015, 62, 875-882.                                          | 0.5 | 8         |
| 258 | Determining soil quality in urban agricultural regions by soil enzyme-based index. Environmental<br>Geochemistry and Health, 2017, 39, 1531-1544.                                                                               | 1.8 | 8         |
| 259 | Improving the Productivity and Profitability of Late Sown Chickpea by Seed Priming. International<br>Journal of Plant Production, 2019, 13, 129-139.                                                                            | 1.0 | 8         |
| 260 | Grain phosphorus and phytate contents of wheat genotypes released during last 6 decades and<br>categorization of selected genotypes for phosphorus use efficiency. Archives of Agronomy and Soil<br>Science, 2019, 65, 727-740. | 1.3 | 8         |
| 261 | Competition dynamics of Parthenium hysterophorus in direct-seeded aerobic rice fields. Experimental Agriculture, 2020, 56, 196-203.                                                                                             | 0.4 | 8         |
| 262 | The Influence of Different Fertilization Strategies on the Grain Yield of Field Peas (Pisum sativum L.)<br>under Conventional and Conservation Tillage. Agronomy, 2020, 10, 1728.                                               | 1.3 | 8         |
| 263 | Salt Tolerance in Alfalfa Landraces of Omani Origin: Morpho-Biochemical, Mineral, and Genetic<br>Diversity Assessment. Journal of Soil Science and Plant Nutrition, 2021, 21, 1484-1499.                                        | 1.7 | 8         |
| 264 | Role of nodal bud and sprout tissue nutrients in sprout establishment, growth, and salt tolerance of sugarcane. Crop and Pasture Science, 2009, 60, 453.                                                                        | 0.7 | 7         |
| 265 | Role of Nitric Oxide in Improving Plant Resistance Against Salt Stress. , 2013, , 413-424.                                                                                                                                      |     | 7         |
| 266 | Foliage applied boron improves the panicle fertility, yield and biofortification of fine grain aromatic rice. Journal of Soil Science and Plant Nutrition, 2014, , 0-0.                                                         | 1.7 | 7         |
| 267 | Allelopathic Crop Water Extracts Application Improves the Wheat Productivity Under Low and High<br>Fertilizer Inputs in a Semi-Arid Environment. International Journal of Plant Production, 2020, 14, 23-35.                    | 1.0 | 7         |
| 268 | Morphological and biochemical changes in maize under drought and salinity stresses in a semi-arid environment. Plant Biosystems, 2020, 154, 396-404.                                                                            | 0.8 | 7         |
| 269 | Long-term winter wheat cropping influenced soil organic carbon pools in different aggregate fractions of Chernozem soil. Archives of Agronomy and Soil Science, 2020, 66, 2055-2066.                                            | 1.3 | 7         |
| 270 | Parthenium weed ( <i>Parthenium hysterophorus</i> ) competition with grain sorghum under arid conditions. Experimental Agriculture, 2020, 56, 387-396.                                                                          | 0.4 | 7         |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Soil Application of Boron Improves the Tillering, Leaf Elongation, Panicle Fertility, Yield and its Grain<br>Enrichment in Fine-Grain Aromatic Rice. Journal of Plant Nutrition, 2015, 38, 338-354. | 0.9 | 6         |
| 272 | Influence of high temperature on carbon assimilation, enzymatic antioxidants and tuber yield of different potato cultivars. Russian Journal of Plant Physiology, 2016, 63, 319-325.                 | 0.5 | 6         |
| 273 | EVALUATION OF TRANSPLANTING BT COTTON IN A COTTON–WHEAT CROPPING SYSTEM. Experimental Agriculture, 2017, 53, 227-241.                                                                               | 0.4 | 6         |
| 274 | Residual zinc improves soil health, productivity and grain quality of rice in conventional and conservation tillage wheat-based systems. Crop and Pasture Science, 2020, 71, 322.                   | 0.7 | 6         |
| 275 | Characterization of chickpea genotypes of Pakistani origin for genetic diversity and zinc grain biofortification. Journal of the Science of Food and Agriculture, 2020, 100, 4139-4149.             | 1.7 | 6         |
| 276 | Bread Wheat Genotypes Accumulating Free Proline and Phenolics Can Better Tolerate Drought Stress<br>Through Sustained Rate of Photosynthesis. Journal of Soil Science and Plant Nutrition, 0, , 1.  | 1.7 | 6         |
| 277 | Barley-Based Cropping Systems and Weed Control Strategies Influence Weed Infestation, Soil<br>Properties and Barley Productivity. Agriculture (Switzerland), 2022, 12, 487.                         | 1.4 | 6         |
| 278 | Boron application through seed coating improves the water relations, panicle fertility, kernel yield, and biofortification of fine grain aromatic rice. Acta Physiologiae Plantarum, 2013, 35, 411. | 1.0 | 5         |
| 279 | Application of Moringa Allelopathy in Crop Sciences. , 2013, , 469-483.                                                                                                                             |     | 5         |
| 280 | Eff ects of surface drying and re-drying primed seeds on germination and seedling growth of chickpea.<br>Seed Science and Technology, 2018, 46, 211-215.                                            | 0.6 | 5         |
| 281 | Choice of nitrogen fertilizer affects grain yield and agronomic nitrogen use efficiency of wheat cultivars. Journal of Plant Nutrition, 2018, 41, 2330-2343.                                        | 0.9 | 5         |
| 282 | Novel inflorescence architecture in gamma radiation-induced faba bean mutant populations.<br>International Journal of Radiation Biology, 2019, 95, 1744-1751.                                       | 1.0 | 5         |
| 283 | Transplanting improves the allometry and fiber quality of Bt cotton in cotton–wheat cropping<br>system. Experimental Agriculture, 2020, 56, 26-36.                                                  | 0.4 | 5         |
| 284 | Economic assessment of water-saving irrigation management techniques and continuous flooded irrigation in different rice production systems. Paddy and Water Environment, 2022, 20, 37-50.          | 1.0 | 5         |
| 285 | Sustainable Nutrient Management. , 2019, , 167-211.                                                                                                                                                 |     | 5         |
| 286 | Morphological, Physiobiochemical and Molecular Adaptability of Legumes of Fabaceae to Drought<br>Stress, with Special Reference to Medicago Sativa L , 2020, , 289-317.                             |     | 5         |
| 287 | Optimization of seed hardening techniques for rice seed invigoration. Emirates Journal of Food and Agriculture, 2004, 16, 48.                                                                       | 1.0 | 5         |
|     |                                                                                                                                                                                                     |     |           |

288 Seed priming with zinc sulfate and zinc chloride affects physio-biochemical traits, grain yield and

| #   | Article                                                                                                                                                                                                                                                | IF               | CITATIONS   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| 289 | Influence of nitrogen on the interference of barnyard grass (Echinochloa crus-galli) with fine grain aromatic rice. Archives of Agronomy and Soil Science, 2008, 54, 493-505.                                                                          | 1.3              | 4           |
| 290 | Allelopathy and Crop Nutrition. , 2013, , 337-348.                                                                                                                                                                                                     |                  | 4           |
| 291 | Evaluating Korean rice genotypes and landraces for octacosanol contents and antioxidant activity.<br>Natural Product Research, 2017, 31, 2778-2782.                                                                                                    | 1.0              | 4           |
| 292 | Evaluating Action Thresholds for Amrasca devastans (Hemiptera: Cicadellidae) Management on<br>Transgenic and Conventional Cotton Across Multiple Planting Dates. Journal of Economic<br>Entomology, 2018, 111, 2182-2191.                              | 0.8              | 4           |
| 293 | Field Performance and Genetic Diversity of Chickpea Genotypes. International Journal of Agriculture and Biology, 2016, 18, 683-688.                                                                                                                    | 0.2              | 4           |
| 294 | Optimizing zinc seed coating treatments for improving growth, productivity and grain biofortification of mungbean. Soil and Environment, 2019, 38, 97-102.                                                                                             | 1.1              | 4           |
| 295 | Prevalence and management of aphids (Hemiptera: Aphididae) in different wheat genotypes and their impact on yield and related traits. PLoS ONE, 2021, 16, e0257952.                                                                                    | 1.1              | 4           |
| 296 | Sorghum Allelopathy for Weed Management in Wheat. , 2008, , 255-270.                                                                                                                                                                                   |                  | 3           |
| 297 | Allelopathic potential of bread wheat helps in suppressing the littleseed canarygrass ( <i>Phalaris) Tj ETQq1 1 0.78</i>                                                                                                                               | 84314 rgB<br>1.3 | T ¦Overlock |
| 298 | Sesbania brown manuring improves soil health, productivity, and profitability of post-rice bread wheat and chickpea. Experimental Agriculture, 0, , 1-18.                                                                                              | 0.4              | 3           |
| 299 | Improving seed germination and seedling growth of guava under heat and osmotic stresses by chemical and hormonal seed treatments. Bragantia, 2020, 79, 512-524.                                                                                        | 1.3              | 3           |
| 300 | Biochar amendment enhanced soil nitrogen fractions and wheat yield after four to fiveÂyears of aging<br>in Loess Plateau, China. Arabian Journal of Geosciences, 2022, 15, 1.                                                                          | 0.6              | 3           |
| 301 | Stimulatory effect on pea of Typha Angustifolia L. extracts and their chemical composition. Journal of Plant Nutrition, 2017, 40, 1993-2005.                                                                                                           | 0.9              | 2           |
| 302 | Potash use in aerobic production system for basmati rice may expand its adaptability as an alternative to flooded rice production system. Journal of Soil Science and Plant Nutrition, 2017, , 0-0.                                                    | 1.7              | 2           |
| 303 | Ecological Management of Agricultural Pests Through Allelopathy. Reference Series in Phytochemistry, 2020, , 543-574.                                                                                                                                  | 0.2              | 2           |
| 304 | Influence of seed size on the growth, productivity, and water use efficiency of bread wheat planted by different methods. Archives of Agronomy and Soil Science, 2021, 67, 354-370.                                                                    | 1.3              | 2           |
| 305 | Influence of soil residual boron on rice performance and soil properties under conventional and conservation rice–wheat cropping systems. Crop and Pasture Science, 2021, 72, 335-347.                                                                 | 0.7              | 2           |
| 306 | Effect of nitrogen application and sorghum mulch on nitrogen use efficiency, microbial biomass<br>carbon, extracellular enzymes activities and growth of mashbean ( <i>Vigna mungo</i> (L.) Hepper).<br>Journal of Plant Nutrition, 2022, 45, 703-712. | 0.9              | 2           |

| #   | Article                                                                                                                                                                                                                                        | IF      | CITATIONS    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|
| 307 | Influence of Seeding Rate, Nitrogen Rate and Weed Regimes on Productivity and Nitrogen Efficiency of<br>Dry Direct-Seeded Rice. International Journal of Plant Production, 2022, 16, 163-180.                                                  | 1.0     | 2            |
| 308 | Performance of Wheat Cultivars Under Different Tillage and Crop Establishment Methods.<br>International Journal of Plant Production, 2022, 16, 287-297.                                                                                        | 1.0     | 2            |
| 309 | Agricultural Practices and Sustainable Management in South Asia. Encyclopedia of the UN Sustainable<br>Development Goals, 2021, , 36-48.                                                                                                       | 0.0     | 2            |
| 310 | Ecological Management of Agricultural Pests Through Allelopathy. Reference Series in Phytochemistry, 2019, , 1-33.                                                                                                                             | 0.2     | 1            |
| 311 | Recent Advances in the Agronomy of Food Legumes. , 2021, , 255-302.                                                                                                                                                                            |         | 1            |
| 312 | Evaluating direct dry-seeding and seed-priming used with the system of rice intensification vs. conventional rice cultivation in Pakistan. Journal of Crop Improvement, 0, , 1-28.                                                             | 0.9     | 1            |
| 313 | Impact of zinc and plant growthâ€promoting bacteria on soil health as well as aboveground biomass of<br><i>desi</i> and <i>kabuli</i> chickpea under arid conditions. Journal of the Science of Food and<br>Agriculture, 2022, 102, 2262-2269. | 1.7     | 1            |
| 314 | Rice Physiology. , 2017, , 455-485.                                                                                                                                                                                                            |         | 1            |
| 315 | Integration of Allelopathic Crop Residues and NPK Fertilizer to Mitigate Residue-Phytotoxicity,<br>Improve Soil Fertility and Wheat Growth under Different Moisture Conditions. Planta Daninha, 2018,<br>36, .                                 | 0.5     | 1            |
| 316 | Physico-chemical Properties and Antioxidant Potential of Papaya (Carica papaya). Journal of Herbs,<br>Spices and Medicinal Plants, 2016, 22, 327-336.                                                                                          | 0.5     | 0            |
| 317 | Single nucleotide polymorphisms in TaER genes and their association with carbon isotope discrimination in wheat genotypes under drought. Biologia Plantarum, 2018, 62, 703-710.                                                                | 1.9     | 0            |
| 318 | Effect of Deficit Irrigation and Dairy Manure on Winter Wheat Yield, Soil Physical Health, and Nitrate<br>Leaching. Communications in Soil Science and Plant Analysis, 2019, 50, 2003-2012.                                                    | 0.6     | 0            |
| 319 | Study of the genetic diversity of Korean, Chinese and Japanese landraces of barley (Hordeum vulgare) Tj ETQq1 I                                                                                                                                | 0.78431 | 4 rgBT /Over |
| 320 | Agricultural Practices and Sustainable Management in South Asia. Encyclopedia of the UN Sustainable<br>Development Goals, 2020, , 1-13.                                                                                                        | 0.0     | 0            |
| 321 | Sodium and Chloride Sensitivity in Alfalfa (Medicago sativa L.): Growth, Photosynthesis, and Tissue<br>Ion Regulation in Contrasting Genotypes. Journal of Plant Growth Regulation, 0, , .                                                     | 2.8     | 0            |