Neeltje van Doremalen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9273240/publications.pdf

Version: 2024-02-01

59 papers 18,115 citations

126708 33 h-index 128067 60 g-index

84 all docs

84 docs citations

84 times ranked 32559 citing authors

#	Article	IF	CITATIONS
1	Increased small particle aerosol transmission of B.1.1.7 compared with SARS-CoV-2 lineage A in vivo. Nature Microbiology, 2022, 7, 213-223.	5.9	45
2	Age-related differences in immune dynamics during SARS-CoV-2 infection in rhesus macaques. Life Science Alliance, 2022, 5, e202101314.	1.3	18
3	The B.1.427/1.429 (epsilon) SARS-CoV-2 variants are more virulent than ancestral B.1 (614G) in Syrian hamsters. PLoS Pathogens, 2022, 18, e1009914.	2.1	26
4	OraSure InteliSwabâ,,¢ Rapid Antigen Test Performance with the SARS-CoV-2 Variants of Concern—Alpha, Beta, Gamma, Delta, and Omicron. Viruses, 2022, 14, 543.	1.5	14
5	Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science, 2022, 377, .	6.0	120
6	Middle East Respiratory Syndrome-Coronavirus Seropositive Bactrian Camels, Mongolia. Vector-Borne and Zoonotic Diseases, 2021, 21, 128-131.	0.6	8
7	K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathogens, 2021, 17, e1009195.	2.1	227
8	Prior aerosol infection with lineage A SARS-CoV-2 variant protects hamsters from disease, but not reinfection with B.1.351 SARS-CoV-2 variant. Emerging Microbes and Infections, 2021, 10, 1284-1292.	3.0	25
9	Limited Genetic Diversity Detected in Middle East Respiratory Syndrome-Related Coronavirus Variants Circulating in Dromedary Camels in Jordan. Viruses, 2021, 13, 592.	1.5	5
10	ChAdOx1-vectored Lassa fever vaccine elicits a robust cellular and humoral immune response and protects guinea pigs against lethal Lassa virus challenge. Npj Vaccines, 2021, 6, 32.	2.9	30
11	Updated and Validated Pan-Coronavirus PCR Assay to Detect All Coronavirus Genera. Viruses, 2021, 13, 599.	1.5	13
12	SARS-CoV-2 vaccines: anamnestic response in previously infected recipients. Cell Research, 2021, 31, 827-828.	5.7	15
13	Mechanistic theory predicts the effects of temperature and humidity on inactivation of SARS-CoV-2 and other enveloped viruses. ELife, 2021, 10, .	2.8	158
14	Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Science Translational Medicine, 2021, 13, .	5.8	180
15	SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters. Nature Communications, 2021, 12, 4985.	5.8	94
16	Immunogenicity of Low-Dose Prime-Boost Vaccination of mRNA Vaccine CV07050101 in Non-Human Primates. Viruses, 2021, 13, 1645.	1.5	8
17	Recovery from Acute SARS-CoV-2 Infection and Development of Anamnestic Immune Responses in T Cell-Depleted Rhesus Macaques. MBio, 2021, 12, e0150321.	1.8	28
18	Risk Factors for Middle East Respiratory Syndrome Coronavirus Infection among Camel Populations, Southern Jordan, 2014–2018. Emerging Infectious Diseases, 2021, 27, 2301-2311.	2.0	3

#	Article	IF	CITATIONS
19	Subtle differences in the pathogenicity of SARS-CoV-2 variants of concern B.1.1.7 and B.1.351 in rhesus macaques. Science Advances, 2021, 7, eabj3627.	4.7	24
20	ChAdOx1 nCoV-19 (AZD1222) protects Syrian hamsters against SARS-CoV-2 B.1.351 and B.1.1.7. Nature Communications, 2021, 12, 5868.	5.8	52
21	Surfaceâ€'Aerosol Stability and Pathogenicity of Diverse Middle East Respiratory Syndrome Coronavirus Strains, 2012â€'2018. Emerging Infectious Diseases, 2021, 27, 3052-3062.	2.0	6
22	Rousettus aegyptiacus Bats Do Not Support Productive Nipah Virus Replication. Journal of Infectious Diseases, 2020, 221, S407-S413.	1.9	19
23	A Novel Field-Deployable Method for Sequencing and Analyses of Henipavirus Genomes From Complex Samples on the MinION Platform. Journal of Infectious Diseases, 2020, 221, S383-S388.	1.9	5
24	ChAdOx1ÂnCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature, 2020, 586, 578-582.	13.7	840
25	Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature, 2020, 585, 268-272.	13.7	619
26	Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature, 2020, 585, 273-276.	13.7	592
27	Effectiveness of N95 Respirator Decontamination and Reuse against SARS-CoV-2 Virus. Emerging Infectious Diseases, 2020, 26, 2253-2255.	2.0	200
28	Effect of Environmental Conditions on SARS-CoV-2 Stability in Human Nasal Mucus and Sputum. Emerging Infectious Diseases, 2020, 26, 2276-2278.	2.0	143
29	A single dose of ChAdOx1 MERS provides protective immunity in rhesus macaques. Science Advances, 2020, 6, eaba8399.	4.7	89
30	Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. New England Journal of Medicine, 2020, 382, 1564-1567.	13.9	7,369
31	A Novel Coronavirus Emerging in China — Key Questions for Impact Assessment. New England Journal of Medicine, 2020, 382, 692-694.	13.9	1,104
32	Dose–response and transmission: the nexus between reservoir hosts, environment and recipient hosts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190016.	1.8	30
33	Bactrian camels shed large quantities of Middle East respiratory syndrome coronavirus (MERS-CoV) after experimental infection. Emerging Microbes and Infections, 2019, 8, 717-723.	3.0	37
34	A single-dose ChAdOx1-vectored vaccine provides complete protection against Nipah Bangladesh and Malaysia in Syrian golden hamsters. PLoS Neglected Tropical Diseases, 2019, 13, e0007462.	1.3	46
35	Efficacy of an Adjuvanted Middle East Respiratory Syndrome Coronavirus Spike Protein Vaccine in Dromedary Camels and Alpacas. Viruses, 2019, 11, 212.	1.5	75
36	Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape. Journal of Virology, 2018, 92, .	1.5	155

#	Article	IF	CITATIONS
37	SARS-Like Coronavirus WIV1-CoV Does Not Replicate in Egyptian Fruit Bats (Rousettus aegyptiacus). Viruses, 2018, 10, 727.	1.5	21
38	Adaptive Evolution of MERS-CoV to Species Variation in DPP4. Cell Reports, 2018, 24, 1730-1737.	2.9	108
39	Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets. Antiviral Research, 2017, 143, 30-37.	1.9	56
40	High Prevalence of Middle East Respiratory Coronavirus in Young Dromedary Camels in Jordan. Vector-Borne and Zoonotic Diseases, 2017, 17, 155-159.	0.6	38
41	Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model. Npj Vaccines, 2017, 2, 28.	2.9	81
42	The Merits of Malaria Diagnostics during an Ebola Virus Disease Outbreak. Emerging Infectious Diseases, 2016, 22, 323-6.	2.0	25
43	Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool. Emerging Infectious Diseases, 2016, 22, 331-4.	2.0	175
44	Computational and molecular analysis of conserved influenza A virus RNA secondary structures involved in infectious virion production. RNA Biology, 2016, 13, 883-894.	1.5	36
45	Contact transmission of influenza virus between ferrets imposes a looser bottleneck than respiratory droplet transmission allowing propagation of antiviral resistance. Scientific Reports, 2016, 6, 29793.	1.6	53
46	Mapping the Specific Amino Acid Residues That Make Hamster DPP4 Functional as a Receptor for Middle East Respiratory Syndrome Coronavirus. Journal of Virology, 2016, 90, 5499-5502.	1.5	9
47	Clinical Chemistry of Patients With Ebola in Monrovia, Liberia. Journal of Infectious Diseases, 2016, 214, S303-S307.	1.9	7
48	PlasmodiumParasitemia Associated With Increased Survival in Ebola Virus–Infected Patients. Clinical Infectious Diseases, 2016, 63, 1026-1033.	2.9	42
49	Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Scientific Reports, 2016, 6, 21878.	1.6	138
50	Ebola Laboratory Response at the Eternal Love Winning Africa Campus, Monrovia, Liberia, 2014–2015. Journal of Infectious Diseases, 2016, 214, S169-S176.	1.9	24
51	SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 2016, 14, 523-534.	13.6	2,752
52	Animal models of Middle East respiratory syndrome coronavirus infection. Antiviral Research, 2015, 122, 28-38.	1.9	66
53	Molecular Evidence of Sexual Transmission of Ebola Virus. New England Journal of Medicine, 2015, 373, 2448-2454.	13.9	380
54	Replication and Shedding of MERS-CoV in Upper Respiratory Tract of Inoculated Dromedary Camels. Emerging Infectious Diseases, 2014, 20, 1999-2005.	2.0	233

#	Article	IF	CITATIONS
55	Stability of Middle East Respiratory Syndrome Coronavirus in Milk. Emerging Infectious Diseases, 2014, 20, 1263-1264.	2.0	96
56	Infection with MERS-CoV Causes Lethal Pneumonia in the Common Marmoset. PLoS Pathogens, 2014, 10, e1004250.	2.1	186
57	Host Species Restriction of Middle East Respiratory Syndrome Coronavirus through Its Receptor, Dipeptidyl Peptidase 4. Journal of Virology, 2014, 88, 9220-9232.	1.5	189
58	A Single Amino Acid in the HA of pH1N1 2009 Influenza Virus Affects Cell Tropism in Human Airway Epithelium, but Not Transmission in Ferrets. PLoS ONE, 2011, 6, e25755.	1.1	28
59	Phagocytosis of Enterovirus-Infected Pancreatic \hat{l}^2 -Cells Triggers Innate Immune Responses in Human Dendritic Cells. Diabetes, 2010, 59, 1182-1191.	0.3	37