
Lucio Montanaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9273194/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, Crystal Structure, and Antibacterial Properties of Silver-Functionalized Low-Dimensional Layered Zirconium Phosphonates. Inorganic Chemistry, 2022, 61, 2251-2264.	4.0	5
2	Comparison of Automated Ribotyping, spa Typing, and MLST in 108 Clinical Isolates of Staphylococcus aureus from Orthopedic Infections. International Journal of Molecular Sciences, 2022, 23, 1660.	4.1	2
3	Colonization and Infection of Indwelling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. International Journal of Molecular Sciences, 2022, 23, 5958.	4.1	30
4	Extracellular DNA (eDNA). A Major Ubiquitous Element of the Bacterial Biofilm Architecture. International Journal of Molecular Sciences, 2021, 22, 9100.	4.1	62
5	Exploring the anticancer effects of standardized extracts of poplar-type propolis: In vitro cytotoxicity toward cancer and normal cell lines. Biomedicine and Pharmacotherapy, 2021, 141, 111895.	5.6	24
6	Tracing the origins of extracellular DNA in bacterial biofilms: story of death and predation to community benefit. Biofouling, 2021, 37, 1022-1039.	2.2	20
7	Various biofilm matrices of the emerging pathogen <i>Staphylococcus lugdunensis</i> : exopolysaccharides, proteins, eDNA and their correlation with biofilm mass. Biofouling, 2020, 36, 86-100.	2.2	13
8	Antibacterial Properties of a Novel Zirconium Phosphate-Glycinediphosphonate Loaded with Either Zinc or Silver. Materials, 2019, 12, 3184.	2.9	9
9	Hijacking of immune defences by biofilms: a multifront strategy. Biofouling, 2019, 35, 1055-1074.	2.2	54
10	General Assembly, Treatment, Multidisciplinary Issues: Proceedings of International Consensus on Orthopedic Infections. Journal of Arthroplasty, 2019, 34, S239-S243.	3.1	6
11	Implant infections: adhesion, biofilm formation and immune evasion. Nature Reviews Microbiology, 2018, 16, 397-409.	28.6	1,342
12	Streptococcus agalactiae Non-Pilus, Cell Wall-Anchored Proteins: Involvement in Colonization and Pathogenesis and Potential as Vaccine Candidates. Frontiers in Immunology, 2018, 9, 602.	4.8	39
13	New Parameters to Quantitatively Express the Invasiveness of Bacterial Strains from Implant-Related Orthopaedic Infections into Osteoblast Cells. Materials, 2018, 11, 550.	2.9	9
14	Serratiopeptidase reduces the invasion of osteoblasts by <i>Staphylococcus aureus</i> . International Journal of Immunopathology and Pharmacology, 2017, 30, 423-428.	2.1	16
15	Molecular Characterization of a Prevalent Ribocluster of Methicillin-Sensitive Staphylococcus aureus from Orthopedic Implant Infections. Correspondence with MLST CC30. Frontiers in Cellular and Infection Microbiology, 2016, 6, 8.	3.9	21
16	Orthopedic implant infections: Incompetence of <i>Staphylococcus epidermidis</i> , <i>Staphylococcus lugdunensis</i> , and <i>Enterococcus faecalis</i> to invade osteoblasts. Journal of Biomedical Materials Research - Part A, 2016, 104, 788-801.	4.0	38
17	Bacterial adhesion to poly-(<scp>d</scp> , <scp>l</scp>)lactic acid blended with vitamin E: Toward gentle anti-infective biomaterials. Journal of Biomedical Materials Research - Part A, 2015, 103, 1447-1458.	4.0	23
18	Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Frontiers in Cellular and Infection Microbiology, 2015, 5, 7.	3.9	312

#	Article	IF	CITATIONS
19	In vitro effect of temperature on the conformational structure and collagen binding of SdrF, a Staphylococcus epidermidis adhesin. Applied Microbiology and Biotechnology, 2015, 99, 5593-5603.	3.6	4
20	Biofilm-Based Implant Infections in Orthopaedics. Advances in Experimental Medicine and Biology, 2015, 830, 29-46.	1.6	134
21	Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials, 2014, 35, 1779-1788.	11.4	185
22	A review of the clinical implications of anti-infective biomaterials andÂinfection-resistant surfaces. Biomaterials, 2013, 34, 8018-8029.	11.4	281
23	A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 2013, 34, 8533-8554.	11.4	1,111
24	Interactions of Staphylococci with Osteoblasts and Phagocytes in the Pathogenesis of Implant-Associated Osteomyelitis. International Journal of Artificial Organs, 2012, 35, 713-726.	1.4	27
25	An Overview of the Methodological Approach to the in Vitro Study of Anti-Infective Biomaterials. International Journal of Artificial Organs, 2012, 35, 800-816.	1.4	12
26	Staphylococcus Lugdunensis, An Aggressive Coagulase-Negative Pathogen not to be Underestimated. International Journal of Artificial Organs, 2012, 35, 742-753.	1.4	30
27	Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials, 2012, 33, 5967-5982.	11.4	874
28	Implant Infections and Infection-Resistant Materials. , 2012, , 347-357.		0
29	Scenery of <i>Staphylococcus</i> implant infections in orthopedics. Future Microbiology, 2011, 6, 1329-1349.	2.0	322
30	Concise Survey of <i>Staphylococcus Aureus</i> Virulence Factors that Promote Adhesion and Damage to Peri-Implant Tissues. International Journal of Artificial Organs, 2011, 34, 771-780.	1.4	44
31	Internalization by Osteoblasts of Two <i>Staphylococcus Aureus</i> Clinical Isolates Differing in their Adhesin Gene Pattern. International Journal of Artificial Organs, 2011, 34, 789-798.	1.4	23
32	Exopolysaccharide Production by Staphylococcus Epidermidis and its Relationship with Biofilm Extracellular DNA. International Journal of Artificial Organs, 2011, 34, 832-839.	1.4	15
33	New Trends in Diagnosis and Control Strategies for Implant Infections. International Journal of Artificial Organs, 2011, 34, 727-736.	1.4	97
34	Emerging Pathogenetic Mechanisms of the Implant-Related Osteomyelitis by <i>Staphylococcus Aureus</i> . International Journal of Artificial Organs, 2011, 34, 781-788.	1.4	69
35	Biofilm Extracellular-DNA in 55 <i>Staphylococcus Epidermidis</i> Clinical Isolates from Implant Infections. International Journal of Artificial Organs, 2011, 34, 840-846.	1.4	21
36	Toll-Like Receptors (TLRs) in Innate Immune Defense Against <i>Staphylococcus Aureus</i> . International Journal of Artificial Organs, 2011, 34, 799-810.	1.4	64

#	Article	IF	CITATIONS
37	Extracellular DNA in Biofilms. International Journal of Artificial Organs, 2011, 34, 824-831.	1.4	219
38	Characterization of 26 Staphylococcus warneri isolates from orthopedic infections. International Journal of Artificial Organs, 2010, 33, 575-581.	1.4	52
39	Polymorphisms of <i>agr</i> locus correspond to distinct genetic patterns of virulence in <i>Staphylococcus aureus</i> clinical isolates from orthopedic implant infections. Journal of Biomedical Materials Research - Part A, 2010, 94A, 825-832.	4.0	8
40	Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials, 2010, 31, 6363-6377.	11.4	342
41	Perspectives on DNA Vaccines. Targeting Staphylococcal Adhesins to Prevent Implant Infections. International Journal of Artificial Organs, 2009, 32, 635-641.	1.4	11
42	Current Methods for Molecular Epidemiology Studies of Implant Infections. International Journal of Artificial Organs, 2009, 32, 642-654.	1.4	7
43	Description of a New Group of Variants of the <i>Staphylococcus Aureus</i> Elastin-Binding Protein that Lacks an Entire DNA Segment of 180 bp. International Journal of Artificial Organs, 2009, 32, 621-629.	1.4	11
44	Panton-Valentine Leukocidin Gene Detected in a <i>Staphylococcus Aureus</i> Strain Isolated from a Knee Arthroprosthesis Infection. International Journal of Artificial Organs, 2009, 32, 630-634.	1.4	6
45	Surface Protein EF3314 Contributes to Virulence Properties of <i>Enterococcus faecalis</i> . International Journal of Artificial Organs, 2009, 32, 611-620.	1.4	18
46	Prevalence of genes for aminoglycosideâ€modifying enzymes in Staphylococcus epidermidis isolates from orthopedic postsurgical and implantâ€related infections. Journal of Biomedical Materials Research - Part A, 2009, 88A, 654-663.	4.0	7
47	Cluster analysis of ribotyping profiles of Staphylococcus epidermidis isolates recovered from foreign bodyâ€associated orthopedic infections. Journal of Biomedical Materials Research - Part A, 2009, 88A, 664-672.	4.0	23
48	The presence of both bone sialoprotein-binding protein gene and collagen adhesin gene as a typical virulence trait of the major epidemic cluster in isolates from orthopedic implant infections. Biomaterials, 2009, 30, 6621-6628.	11.4	52
49	Prospecting Gene Therapy of Implant Infections. International Journal of Artificial Organs, 2009, 32, 689-695.	1.4	20
50	Strong biofilm production, antibiotic multi-resistance and high gelE expression in epidemic clones of Enterococcus faecalis from orthopaedic implant infections. Biomaterials, 2008, 29, 580-586.	11.4	76
51	Molecular epidemiology of Staphylococcus aureus from implant orthopaedic infections: Ribotypes, agr polymorphism, leukocidal toxins and antibiotic resistance. Biomaterials, 2008, 29, 4108-4116.	11.4	57
52	Antibiotic multiresistance strictly associated with IS256 andica genes inStaphylococcus epidermidis strains from implant orthopedic infections. Journal of Biomedical Materials Research - Part A, 2007, 83A, 813-818.	4.0	27
53	The role of Enterococcus faecalis in orthopaedic peri-implant infections demonstrated by automated ribotyping and cluster analysis. Biomaterials, 2007, 28, 3987-3995.	11.4	23
54	Advancements in molecular epidemiology of implant infections and future perspectives. Biomaterials, 2007, 28, 5155-5168.	11.4	95

#	Article	IF	CITATIONS
55	Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis. Scoliosis, 2006, 1, 21.	0.4	53
56	Relationship between biofilm formation, the enterococcal surface protein (Esp) and gelatinase in clinical isolates ofEnterococcus faecalisandEnterococcus faecium. FEMS Microbiology Letters, 2006, 256, 145-150.	1.8	133
57	The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials, 2006, 27, 2331-2339.	11.4	921
58	Promising in vitro performances of a new nickel-free stainless steel. Journal of Materials Science: Materials in Medicine, 2006, 17, 267-275.	3.6	41
59	Detection of biofilm formation inStaphylococcus epidermidis from implant infections. Comparison of a PCR-method that recognizes the presence ofica genes with two classic phenotypic methods. Journal of Biomedical Materials Research - Part A, 2006, 76A, 425-430.	4.0	98
60	Prevalence ofcna,fnbAandfnbBadhesin genes amongStaphylococcus aureusisolates from orthopedic infections associated to different types of implant. FEMS Microbiology Letters, 2005, 246, 81-86.	1.8	102
61	A multiplex PCR method for the detection of all five individual genes ofica locus inStaphylococcus epidermidis. A survey on 400 clinical isolates from prosthesis-associated infections. Journal of Biomedical Materials Research - Part A, 2005, 75A, 408-413.	4.0	59
62	Antibiotic resistance in exopolysaccharide-forming Staphylococcus epidermidis clinical isolates from orthopaedic implant infections. Biomaterials, 2005, 26, 6530-6535.	11.4	117
63	Evaluation of bacterial adhesion of Streptococcus mutans on dental restorative materials. Biomaterials, 2004, 25, 4457-4463.	11.4	131
64	Search for the insertion element IS256 within the ica locus of Staphylococcus epidermidis clinical isolates collected from biomaterial-associated infections. Biomaterials, 2004, 25, 4117-4125.	11.4	63
65	Presence of fibrinogen-binding adhesin gene in Staphylococcus epidermidis isolates from central venous catheters-associated and orthopaedic implant-associated infections. Biomaterials, 2004, 25, 4825-4829.	11.4	40
66	In vitro behaviour of bone marrow-derived mesenchymal cells cultured on fluorohydroxyapatite-coated substrata with different roughness. Biomaterials, 2003, 24, 587-596.	11.4	69
67	Staphylococcus epidermidis–fibronectin binding and its inhibition by heparin. Biomaterials, 2003, 24, 3013-3019.	11.4	87
68	Dynamics of the interaction between a fibronectin molecule and a living bacterium under mechanical force. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13292-13297.	7.1	103
69	Occurrence of ica genes for slime synthesis in a collection of Staphylococcus epidermidis strains from orthopedic prosthesis infections. Acta Orthopaedica, 2003, 74, 617-621.	1.4	28
70	Cu2+- and Ag+-complexes with a hyaluronane-based hydrogel. Journal of Materials Chemistry, 2002, 12, 3084-3092.	6.7	20
71	Detection of the G→T Polymorphism at the Sp1 Binding Site of the Collagen Type lα1 Gene by a Novel Arms-PCR Method. Genetic Testing and Molecular Biomarkers, 2002, 6, 53-57.	1.7	11
72	In catheter infections byStaphylococcus epidermidis the intercellular adhesion (ica) locus is a molecular marker of the virulent slime-producing strains. Journal of Biomedical Materials Research Part B, 2002, 59, 557-562.	3.1	51

#	Article	IF	CITATIONS
73	Effects on antibiotic resistance of Staphylococcus epidermidis following adhesion to polymethylmethacrylate and to silicone surfaces. Biomaterials, 2002, 23, 1495-1502.	11.4	73
74	Detection of slime production by means of an optimised Congo red agar plate test based on a colourimetric scale in Staphylococcus epidermidis clinical isolates genotyped for ica locus. Biomaterials, 2002, 23, 4233-4239.	11.4	154
75	Detection of biofilm-forming strains of Staphylococcus epidermidis and S. aureus. Expert Review of Molecular Diagnostics, 2002, 2, 478-484.	3.1	43
76	Nucleotides U28-A42 and A37 in unmodified yeast tRNATrpas negative identity elements for bovine tryptophanyl-tRNA synthetase. FEBS Letters, 2001, 492, 238-241.	2.8	6
77	Shiga toxin 1: damage to DNA in vitro. Toxicon, 2001, 39, 341-348.	1.6	26
78	A Rapid PCR Method for the Detection of Slime-producing Strains of Staphylococcus epidermidis and S. aureus in Periprosthesis Infections. Diagnostic Molecular Pathology, 2001, 10, 130-137.	2.1	50
79	Enterococcus spp. produces slime and survives in rat peritoneal macrophages. Medical Microbiology and Immunology, 2001, 190, 113-120.	4.8	133
80	A survey of adenine and 4-aminopyrazolo[3,4-d]pyrimidine (4-APP) as inhibitors of ribosome-inactivating proteins (RIPs). Life Sciences, 2000, 68, 331-336.	4.3	5
81	Identity elements in bovine tRNATrp required for the specific stimulation of gelonin, a plant ribosome-inactivating protein. Rna, 1999, 5, 1357-1363.	3.5	5
82	Influence of polyethylene terephthalate on the release of growth factors by human endothelial cells. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 891-900.	3.5	6
83	Hydroxyapatite-coated orthopaedic screws as infection resistant materials: in vitro study. Biomaterials, 1999, 20, 323-327.	11.4	70
84	Cytokine release in mononuclear cells of patients with Co–Cr hip prosthesis. Biomaterials, 1999, 20, 1079-1086.	11.4	111
85	Presence and expression of collagen adhesin gene (cna) and slime production in Staphylococcus aureus strains from orthopaedic prosthesis infections. Biomaterials, 1999, 20, 1945-1949.	11.4	73
86	Production of growth factors by in vitro cultured human endothelial cells after contact with carbon coated polyethylene terephthalate. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 989-997.	3.5	5
87	Uncompetitive inhibition by adenine of the RNA-N-glycosidase activity of ribosome-inactivating proteins. BBA - Proteins and Proteomics, 1998, 1384, 277-284.	2.1	10
88	Inhibition of bacterial adherence to a high-water-content polymer by a water-soluble, nonsteroidal, anti-inflammatory drug. Journal of Biomedical Materials Research Part B, 1998, 42, 1-5.	3.1	44
89	Shigaâ€ l ike toxin I is a polynucleotide:adenosine glycosidase. Molecular Microbiology, 1998, 29, 661-662.	2.5	37
90	Primer tRNATrp of RSV-transformed or RAV-1-infected cells up-regulates the antiribosomal activity of gelonin. Biochimie, 1998, 80, 575-578.	2.6	1

#	Article	IF	CITATIONS
91	Identification of the tRNAs which up-regulate agrostin, barley RIP and PAP-S, three ribosome-inactivating proteins of plant origin. FEBS Letters, 1998, 431, 259-262.	2.8	9
92	Cofactor requirement of ribosome-inactivating proteins from plants. Journal of Experimental Botany, 1997, 48, 1519-1523.	4.8	8
93	The RNA-N-glycosidase activity of Shiga-like toxin I: Kinetic parameters of the native and activated toxin. Toxicon, 1997, 35, 1431-1437.	1.6	30
94	tRNATrp as cofactor of gelonin, a ribosome-inactivating protein with RNA-N-glycosidase activity features required for the cofactor activity. IUBMB Life, 1996, 40, 181-188.	3.4	1
95	Differential up-regulation by tRNAs of ribosome-inactivating proteins. FEBS Letters, 1995, 373, 115-118.	2.8	15
96	Partial purification of two proteins which sensitize ribosomes to gelonin: Sensitization is not linked to phosphorylation of ribosomal proteins. Toxicon, 1993, 31, 989-996.	1.6	4
97	Differential requirement of ATP and extra-ribosomal proteins for ribosome inactivation by eight RNA N-glycosidases. Biochemical and Biophysical Research Communications, 1992, 182, 579-582.	2.1	31
98	Elongation factor 2 from Artemia salina embryos and its affinity for ribosomes. FEBS Journal, 1991, 200, 13-18.	0.2	3
99	Alpha-sarcin impairs the N-glycosidase activity of ricin on ribosomes. Biochemical and Biophysical Research Communications, 1989, 160, 857-861.	2.1	6
100	Interaction of diphtheria toxin fragment A and of elongation factor 2 with Cibacron blue. Bioscience Reports, 1987, 7, 737-743.	2.4	6
101	Interaction of alpha-sarcin and gelonin with Cibacron blue. Bioscience Reports, 1986, 6, 901-908.	2.4	14
102	Dye affinity chromatography of ricin subunits. Bioscience Reports, 1986, 6, 1035-1040.	2.4	15
103	Effect of temperature on haemagglutinating activity and on the conformation of leucoagglutinin, a lectin from Phaseolus vulgaris (red kidney bean). FEBS Letters, 1980, 120, 115-118.	2.8	5
104	[64] Fluorescence polarization of elongation factor 2. Methods in Enzymology, 1979, 60, 712-719.	1.0	3
105	Inhibition of protein synthesis by ricin: experiments with rat liver mitochondria and nuclei and with ribosomes from <i>Escherichia coli</i> . Biochemical Journal, 1974, 142, 695-697.	3.7	23
106	Inhibition by ricin of protein synthesis <i>in vitro</i> : 60S ribosomal subunit as the target of the toxin (<i>Short Communication</i>). Biochemical Journal, 1973, 136, 813-815.	3.1	128
107	Inhibition by ricin of protein synthesis <i>in vitro</i> . Ribosomes as the target of the toxin. Biochemical Journal, 1973, 136, 677-683.	3.1	119

108 Studying Bacterial Adhesion to Irregular or Porous Surfaces. , 0, , 331-343.