
Stefania Pizzimenti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/927269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasound-Responsive Nrf2-Targeting siRNA-Loaded Nanobubbles for Enhancing the Treatment of Melanoma. Pharmaceutics, 2022, 14, 341.	4.5	18
2	Control of Oxidative Stress in Cancer Chemoresistance: Spotlight on Nrf2 Role. Antioxidants, 2021, 10, 510.	5.1	39
3	Post-translational down-regulation of Nrf2 and YAP proteins, by targeting deubiquitinases, reduces growth and chemoresistance in pancreatic cancer cells. Free Radical Biology and Medicine, 2021, 174, 202-210.	2.9	20
4	Nrf2, YAP, antioxidant potential, and cancer. , 2021, , 159-170.		2
5	Peroxisome Proliferator-Activated Receptors (PPARs) and Oxidative Stress in Physiological Conditions and in Cancer. Antioxidants, 2021, 10, 1734.	5.1	24
6	Oxidative Stress-Related Mechanisms in Melanoma and in the Acquired Resistance to Targeted Therapies. Antioxidants, 2021, 10, 1942.	5.1	33
7	Carbosilane Dendrimers Loaded with siRNA Targeting Nrf2 as a Tool to Overcome Cisplatin Chemoresistance in Bladder Cancer Cells. Antioxidants, 2020, 9, 993.	5.1	20
8	Non-Melanoma Skin Cancer: news from microbiota research. Critical Reviews in Microbiology, 2020, 46, 433-449.	6.1	19
9	Ailanthone increases oxidative stress in CDDP-resistant ovarian and bladder cancer cells by inhibiting of Nrf2 and YAP expression through a post-translational mechanism. Free Radical Biology and Medicine, 2020, 150, 125-135.	2.9	36
10	Glutathione-responsive cyclodextrin-nanosponges as drug delivery systems for doxorubicin: Evaluation of toxicity and transport mechanisms in the liver. Toxicology in Vitro, 2020, 65, 104800.	2.4	37
11	Improvement in the Anti-Tumor Efficacy of Doxorubicin Nanosponges in In Vitro and in Mice Bearing Breast Tumor Models. Cancers, 2020, 12, 162.	3.7	47
12	Novel tetrahydroacridine derivatives with iodobenzoic moieties induce G0/G1 cell cycle arrest and apoptosis in A549 non-small lung cancer and HT-29 colorectal cancer cells. Molecular and Cellular Biochemistry, 2019, 460, 123-150.	3.1	19
13	Paclitaxel-Loaded Nanosponges Inhibit Growth and Angiogenesis in Melanoma Cell Models. Frontiers in Pharmacology, 2019, 10, 776.	3.5	36
14	Post-translational inhibition of YAP oncogene expression by 4-hydroxynonenal in bladder cancer cells. Free Radical Biology and Medicine, 2019, 141, 205-219.	2.9	13
15	Ailanthone inhibits cell growth and migration of cisplatin resistant bladder cancer cells through down-regulation of Nrf2, YAP, and c-Myc expression Phytomedicine, 2019, 56, 156-164.	5.3	45
16	KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: Implication for Cerebral Cavernous Malformation disease. Free Radical Biology and Medicine, 2018, 115, 202-218.	2.9	69
17	Crosstalk between Nrf2 and YAP contributes to maintaining the antioxidant potential and chemoresistance in bladder cancer. Free Radical Biology and Medicine, 2018, 115, 447-457.	2.9	65
18	Lipid Peroxidation-Derived Aldehydes, 4-Hydroxynonenal and Malondialdehyde in Aging-Related Disorders, Antioxidants, 2018, 7, 102,	5.1	162

STEFANIA PIZZIMENTI

#	Article	IF	CITATIONS
19	Drug Delivery Nanoparticles in Treating Chemoresistant Tumor Cells. Current Medicinal Chemistry, 2018, 24, 4800-4815.	2.4	6
20	Enhanced cytotoxic effect of camptothecin nanosponges in anaplastic thyroid cancer cells <i>in vitro</i> and <i>in vivo</i> on orthotopic xenograft tumors. Drug Delivery, 2017, 24, 670-680.	5.7	41
21	DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity. AIMS Genetics, 2017, 04, 103-137.	1.9	105
22	Mitochondrial Dysfunction in Cancer and Neurodegenerative Diseases: Spotlight on Fatty Acid Oxidation and Lipoperoxidation Products. Antioxidants, 2016, 5, 7.	5.1	55
23	<i>In Vitro</i> and <i>In Vivo</i> Therapeutic Evaluation of Camptothecin-Encapsulated <i>I²</i> -Cyclodextrin Nanosponges in Prostate Cancer. Journal of Biomedical Nanotechnology, 2016, 12, 114-127.	1.1	67
24	GSH-targeted nanosponges increase doxorubicin-induced toxicity "in vitro―and "in vivo―in cancer cells with high antioxidant defenses. Free Radical Biology and Medicine, 2016, 97, 24-37.	2.9	70
25	Immunotargeting of Antigen xCT Attenuates Stem-like Cell Behavior and Metastatic Progression in Breast Cancer. Cancer Research, 2016, 76, 62-72.	0.9	93
26	YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene, 2016, 35, 1541-1553.	5.9	108
27	Generation of Adducts of 4-Hydroxy-2-nonenal with Heat Shock 60 kDa Protein 1 in Human Promyelocytic HL-60 and Monocytic THP-1 Cell Lines. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-13.	4.0	9
28	Role of 4-Hydroxynonenal-Protein Adducts in Human Diseases. Antioxidants and Redox Signaling, 2015, 22, 1681-1702.	5.4	92
29	Combination Strategy Targeting VEGF and HGF/c-met in Human Renal Cell Carcinoma Models. Molecular Cancer Therapeutics, 2015, 14, 101-110.	4.1	82
30	Improved Anti-Tumoral Therapeutic Efficacy of 4-Hydroxynonenal Incorporated in Novel Lipid Nanocapsules in 2D and 3D Models. Journal of Biomedical Nanotechnology, 2015, 11, 2169-2185.	1.1	8
31	Drug Delivery Nanoparticles in Skin Cancers. BioMed Research International, 2014, 2014, 1-13.	1.9	120
32	Abstract 3754: Hippo pathway effector Yes-associated protein and cisplatin resistance in transitional cell carcinoma of the bladder. , 2014, , .		0
33	The inclusion complex of 4-hydroxynonenal with a polymeric derivative of β-cyclodextrin enhances the antitumoral efficacy of the aldehyde in several tumor cell lines and in a three-dimensional human melanoma model. Free Radical Biology and Medicine, 2013, 65, 765-777.	2.9	14
34	Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Frontiers in Physiology, 2013, 4, 242.	2.8	254
35	AS601245, an Anti-Inflammatory JNK Inhibitor, and Clofibrate Have a Synergistic Effect in Inducing Cell Responses and in Affecting the Gene Expression Profile in CaCo-2 Colon Cancer Cells. PPAR Research, 2012, 2012, 1-16.	2.4	22
36	Rosiglitazone and AS601245 Decrease Cell Adhesion and Migration through Modulation of Specific Gene Expression in Human Colon Cancer Cells. PLoS ONE, 2012, 7, e40149.	2.5	27

STEFANIA PIZZIMENTI

#	Article	IF	CITATIONS
37	Lipid Peroxidation in Colorectal Carcinogenesis: Bad and Good News. , 2012, , .		1
38	PPAR ^{î3} in coronary atherosclerosis: In vivo expression pattern and correlations with hyperlipidemic status and statin treatment. Atherosclerosis, 2011, 218, 479-485.	0.8	19
39	Induction of cell cycle arrest and DNA damage by the HDAC inhibitor panobinostat (LBH589) and the lipid peroxidation end product 4-hydroxynonenal in prostate cancer cells. Free Radical Biology and Medicine, 2011, 50, 313-322.	2.9	49
40	Nuclear factor erythroid 2-related factor-2 activity controls 4-hydroxynonenal metabolism and activity in prostate cancer cells. Free Radical Biology and Medicine, 2011, 51, 1610-1618.	2.9	26
41	PPAR ^{ĵ3} ligands inhibit telomerase activity and hTERT expression through modulation of the Myc/Mad/Max network in colon cancer cells. Journal of Cellular and Molecular Medicine, 2010, 14, 1347-1357.	3.6	23
42	4-Hydroxynonenal, a lipid peroxidation product of dietary polyunsaturated fatty acids, has anticarcinogenic properties in colon carcinoma cell lines through the inhibition of telomerase activity. Journal of Nutritional Biochemistry, 2010, 21, 818-826.	4.2	27
43	The "Two-Faced" Effects of Reactive Oxygen Species and the Lipid Peroxidation Product 4-Hydroxynonenal in the Hallmarks of Cancer. Cancers, 2010, 2, 338-363.	3.7	76
44	Increase of telomerase activity and hTERT expression in myelodysplastic syndromes. Cancer Biology and Therapy, 2009, 8, 883-889.	3.4	32
45	MicroRNA expression changes during human leukemic HL-60 cell differentiation induced by 4-hydroxynonenal, a product of lipid peroxidation. Free Radical Biology and Medicine, 2009, 46, 282-288.	2.9	55
46	Exposure of HL-60 human leukaemic cells to 4-hydroxynonenal promotes the formation of adduct(s) with α-enolase devoid of plasminogen binding activity. Biochemical Journal, 2009, 422, 285-294.	3.7	22
47	Lipid peroxidation: control of cell proliferation, cell differentiation and cell death. Molecular Aspects of Medicine, 2008, 29, 1-8.	6.4	121
48	The Role of PPAR Ligands in Controlling Growth-Related Gene Expression and their Interaction with Lipoperoxidation Products. PPAR Research, 2008, 2008, 1-15.	2.4	20
49	Down-Regulation of Notch1 Expression is Involved in HL-60 Cell Growth Inhibition Induced by 4-Hydroxynonenal, a Product of Lipid Peroxidation. Medicinal Chemistry, 2008, 4, 551-557.	1.5	9
50	4-Hydroxynonenal and PPARÎ ³ ligands affect proliferation, differentiation, and apoptosis in colon cancer cells. Free Radical Biology and Medicine, 2007, 42, 1661-1670.	2.9	79
51	4-Hydroxynonenal inhibits telomerase activity and hTERT expression in human leukemic cell lines. Free Radical Biology and Medicine, 2006, 40, 1578-1591.	2.9	38
52	4â€Hydroxynonenal and cell cycle. BioFactors, 2005, 24, 151-157.	5.4	23
53	4-Hydroxynonenal modulation of p53 family gene expression in the SK-N-BE neuroblastoma cell line. Free Radical Biology and Medicine, 2005, 38, 215-225.	2.9	58
54	4-hydroxynonenal and regulation of cell cycle: effects on the pRb/E2F pathway. Free Radical Biology and Medicine, 2004, 37, 597-606.	2.9	62

STEFANIA PIZZIMENTI

#	Article	IF	CITATIONS
55	Cholesteryl butyrate solid lipid nanoparticles as a butyric acid pro-drug: effects on cell proliferation, cell-cycle distribution and c-myc expression in human leukemic cells. Anti-Cancer Drugs, 2004, 15, 525-536.	1.4	19
56	Peroxisome Proliferator-Activated Receptor Ligands Affect Growth-Related Gene Expression in Human Leukemic Cells. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 932-942.	2.5	45
57	4-Hydroxynonenal affects pRb/E2F pathway in HL-60 human leukemic cells. Biochemical and Biophysical Research Communications, 2002, 295, 267-275.	2.1	30
58	Synergistic effect of 4-hydroxynonenal and PPAR ligands in controlling human leukemic cell growth and differentiation. Free Radical Biology and Medicine, 2002, 32, 233-245.	2.9	61
59	Growth inhibition and differentiation induction in murine erythroleukemia cells by 4-hydroxynonenal. Free Radical Research, 2001, 34, 629-637.	3.3	19
60	4-Hydroxynonenal-Induced MEL Cell Differentiation Involves PKC Activity Translocation. Biochemical and Biophysical Research Communications, 2000, 272, 75-80.	2.1	32
61	Inhibition of D1, D2, and a cyclin expression in HL-60 cells by the lipid peroxydation product 4-hydroxynonenal. Free Radical Biology and Medicine, 1999, 26, 1578-1586.	2.9	51
62	Enzymes Metabolizing Aldehydes in HL-60 Human Leukemic Cells. Advances in Experimental Medicine and Biology, 1999, 463, 517-522.	1.6	2
63	4-Hydroxynonenal Specifically Inhibits c-myb but Does Not Affect c-fos Expressions in HL-60 Cells. Biochemical and Biophysical Research Communications, 1996, 227, 589-593.	2.1	39
64	Effect of 4-hydroxynonenal on cell cycle progression and expression of differentiation-associated antigens in HL-60 cells. Free Radical Biology and Medicine, 1996, 20, 455-462.	2.9	54