Ria Millati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9272534/publications.pdf Version: 2024-02-01

<u> Ριλ Μιιιλτι</u>

#	Article	IF	CITATIONS
1	Enhancing or Inhibitory Effect of Fruit or Vegetable Bioactive Compound on Aspergillus niger and A. oryzae. Journal of Fungi (Basel, Switzerland), 2022, 8, 12.	3.5	7
2	Inhibitory and Stimulatory Effects of Fruit Bioactive Compounds on Edible Filamentous Fungi: Potential for Innovative Food Applications. Fermentation, 2022, 8, 270.	3.0	2
3	Semi-continuous production of volatile fatty acids from citrus waste using membrane bioreactors. Innovative Food Science and Emerging Technologies, 2021, 67, 102545.	5.6	6
4	Protective effect of a reverse membrane bioreactor against toluene and naphthalene in anaerobic digestion. Biotechnology and Applied Biochemistry, 2021, , .	3.1	1
5	Cultivation of edible filamentous fungus Aspergillus oryzae on volatile fatty acids derived from anaerobic digestion of food waste and cow manure. Bioresource Technology, 2021, 337, 125410.	9.6	19
6	Enhanced Volatile Fatty Acid Production from Oil Palm Empty Fruit Bunch through Acidogenic Fermentation—A Novel Resource Recovery Strategy for Oil Palm Empty Fruit Bunch. Fermentation, 2021, 7, 263.	3.0	6
7	Factors influencing volatile fatty acids production from food wastes via anaerobic digestion. Bioengineered, 2020, 11, 39-52.	3.2	101
8	Recovery of High Purity Lignin and Digestible Cellulose from Oil Palm Empty Fruit Bunch Using Low Acid-Catalyzed Organosolv Pretreatment. Agronomy, 2020, 10, 674.	3.0	27
9	Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks. Bioresource Technology, 2020, 304, 122998.	9.6	104
10	Utilization of food waste-derived volatile fatty acids for production of edible Rhizopus oligosporus fungal biomass. Bioresource Technology, 2020, 310, 123444.	9.6	34
11	Fermentation Inhibitors in Ethanol and Biogas Processes and Strategies to Counteract Their Effects. , 2019, , 461-499.		13
12	Inhibition of patchouli oil for anaerobic digestion and enhancement in methane production using reverse membrane bioreactors. Renewable Energy, 2018, 129, 748-753.	8.9	16
13	Effect of Effluent Recirculation on Biogas Production Using Two-stage Anaerobic Digestion of Citrus Waste. Molecules, 2018, 23, 3380.	3.8	33
14	Anaerobic digestion of citrus waste using two-stage membrane bioreactor. IOP Conference Series: Materials Science and Engineering, 2018, 316, 012063.	0.6	6
15	Semi-Continuous Reverse Membrane Bioreactor in Two-Stage Anaerobic Digestion of Citrus Waste. Materials, 2018, 11, 1341.	2.9	11
16	EFFECT OF LIGNOSELULOLITIC FUNGUS TO ENZIMATIC ACTIVITY, FIBER FRCTION, AND DIGESTIBILITY ON FERMENTATION PROCESS OF COCOA POD. Buletin Peternakan, 2017, 41, 250.	0.2	1
17	Inhibitory Effect of Long-Chain Fatty Acids on Biogas Production and the Protective Effect of Membrane Bioreactor. BioMed Research International, 2016, 2016, 1-9.	1.9	23
18	Ethanol production from alkali-pretreated oil palm empty fruit bunch by simultaneous saccharification and fermentation withmucor indicus. International Journal of Green Energy, 2016, 13, 566-572.	3.8	15

Ria Millati

#	Article	IF	CITATIONS
19	Mesophilic batch anaerobic digestion from fruit fragments. Renewable Energy, 2016, 98, 135-141.	8.9	30
20	Improvement of Biogas Production from Orange Peel Waste by Leaching of Limonene. BioMed Research International, 2015, 2015, 1-6.	1.9	104
21	Effects of Lactone, Ketone, and Phenolic Compounds on Methane Production and Metabolic Intermediates During Anaerobic Digestion. Applied Biochemistry and Biotechnology, 2015, 175, 1651-1663.	2.9	20
22	Biogas Production from Citrus Waste by Membrane Bioreactor. Membranes, 2014, 4, 596-607.	3.0	41
23	Performance of semi-continuous membrane bioreactor in biogas production from toxic feedstock containing d -Limonene. Bioresource Technology, 2014, 170, 350-355.	9.6	22
24	Effect of ester compounds on biogas production: beneficial or detrimental?. Energy Science and Engineering, 2014, 2, 22-30.	4.0	15
25	2nd Generation Ethanol by Zygomycetes Fungi at Elevated Temperature. Energy Procedia, 2014, 52, 104-109.	1.8	6
26	Pretreatment of oil palm empty fruit bunch (OPEFB) by N-methylmorpholine-N-oxide (NMMO) for biogas production: Structural changes and digestion improvement. Bioresource Technology, 2013, 128, 461-466.	9.6	49
27	Inhibitory effects of fruit flavors on methane production during anaerobic digestion. Bioresource Technology, 2013, 145, 188-192.	9.6	29
28	Structural Changes of Oil Palm Empty Fruit Bunch (OPEFB) after Fungal and Phosphoric Acid Pretreatment. Molecules, 2012, 17, 14995-15012.	3.8	96
29	Isolation and Characterization of Zygomycetes Fungi from Tempe for Ethanol Production and Biomass Applications. Applied Biochemistry and Biotechnology, 2012, 167, 1501-1512.	2.9	38
30	Biological pretreatment of lignocelluloses with white-rot fungi and its applications: A review. BioResources, 2011, 6, 5224-5259.	1.0	223
31	Ethanol from Oil Palm Empty Fruit Bunch via Dilute-Acid Hydrolysis and Fermentation by Mucor indicus and Saccharomyces cerevisiae. Agricultural Journal, 2011, 6, 54-59.	0.1	35
32	Effect of Furfural, Hydroxymethylfurfural and Acetic Acid on Indigeneous Microbial Isolate for Bioethanol Production. Agricultural Journal, 2010, 5, 105-109.	0.1	35
33	Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzates. Enzyme and Microbial Technology, 2005, 36, 294-300.	3.2	153
34	Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by. FEMS Yeast Research, 2005, 5, 669-676.	2.3	105
35	Effect of pH, time and temperature of overliming on detoxification of dilute-acid hydrolyzates for fermentation by Saccharomyces cerevisiae. Process Biochemistry, 2002, 38, 515-522.	3.7	122
36	Continuous Cultivation of Dilute-Acid Hydrolysates to Ethanol by Immobilized Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2001, 95, 45-58.	2.9	34

#	Article	IF	CITATIONS
37	Organosolv pretreatment of oat husk using oxalic acid as an alternative organic acid and its potential applications in biorefinery. Biomass Conversion and Biorefinery, 0, , 1.	4.6	13