
Sarah E Cornell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9272506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogen deposition to the eastern Atlantic Ocean. The importance of south-easterly flow. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 37.	0.8	63
2	Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. Environmental Science & Technology, 2022, 56, 1510-1521.	4.6	477
3	Defining a sustainable development target space for 2030 and 2050. One Earth, 2022, 5, 142-156.	3.6	54
4	Failures to disagree are essential for environmental science to effectively influence policy development. Ecology Letters, 2022, , .	3.0	14
5	A shared future: chemistry's engagement is essential for resilience of people and planet. Royal Society Open Science, 2022, 9, .	1.1	3
6	A planetary boundary for green water. Nature Reviews Earth & Environment, 2022, 3, 380-392.	12.2	95
7	Response to Comment on "Outside the Safe Operating Space of the Planetary Boundary for Novel Entities― Environmental Science & Technology, 2022, 56, 6788-6789.	4.6	3
8	Management Education and Earth System Science: Transformation as if Planetary Boundaries Mattered. Business and Society, 2021, 60, 26-56.	4.2	11
9	Making Resilient Decisions for Sustainable Circularity of Fashion. Circular Economy and Sustainability, 2021, 1, 651-670.	3.3	9
10	Integrating Sustainability into Learning in Chemistry. Journal of Chemical Education, 2021, 98, 1061-1063.	1.1	17
11	Succeeding at home and abroad: accounting for the international spillovers of cities' SDG actions. Npj Urban Sustainability, 2021, 1, .	3.7	17
12	Resolving ecological feedbacks on the ocean carbon sink in Earth system models. Earth System Dynamics, 2021, 12, 797-818.	2.7	8
13	Systems Thinking and Sustainability. Chemistry International, 2021, 43, 6-10.	0.3	9
14	A prototype Earth system impact metric that accounts for cross-scale interactions. Environmental Research Letters, 2021, 16, 115005.	2.2	6
15	Taxonomies for structuring models for World–Earth systems analysis of the Anthropocene: subsystems, their interactions and social–ecological feedback loops. Earth System Dynamics, 2021, 12, 1115-1137.	2.7	15
16	Human well-being in the Anthropocene: limits to growth. Global Sustainability, 2021, 4, .	1.6	4
17	Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resources Research, 2020, 56, e2019WR024957.	1.7	86
18	Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 2020, 585, 551-556.	13.7	413

SARAH E CORNELL

#	Article	IF	CITATIONS
19	The Water Planetary Boundary: Interrogation and Revision. One Earth, 2020, 2, 223-234.	3.6	98
20	Delineating the Plate Boundaries: A Review of Integrated Metrics for Healthy and Environmentally Sustainable Diets. , 2020, , 339-350.		0
21	Integrating the Water Planetary Boundary With Water Management From Local to Global Scales. Earth's Future, 2020, 8, e2019EF001377.	2.4	65
22	Earth system data cubes unravel global multivariate dynamics. Earth System Dynamics, 2020, 11, 201-234.	2.7	59
23	Keystone actors do not act alone: A business ecosystem perspective on sustainability in the global clothing industry. PLoS ONE, 2020, 15, e0241453.	1.1	18
24	Anthropocene risk. Nature Sustainability, 2019, 2, 667-673.	11.5	133
25	Challenges and opportunities towards improved application of the planetary boundary for land-system change in life cycle assessment of products. Science of the Total Environment, 2019, 696, 133964.	3.9	19
26	Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet, The, 2019, 393, 447-492.	6.3	5,421
27	Matching scope, purpose and uses of planetary boundaries science. Environmental Research Letters, 2019, 14, 073005.	2.2	32
28	Achieving the 17 Sustainable Development Goals within 9 planetary boundaries. Global Sustainability, 2019, 2, .	1.6	79
29	Potential feedbacks between loss of biosphere integrity and climate change. Global Sustainability, 2019, 2, .	1.6	11
30	Marine plastic pollution as a planetary boundary threat – The drifting piece in the sustainability puzzle. Marine Policy, 2018, 96, 213-220.	1.5	307
31	Governance, polycentricity and the global nitrogen and phosphorus cycles. Environmental Science and Policy, 2018, 79, 54-65.	2.4	31
32	Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8252-8259.	3.3	1,832
33	Analytically tractable climate–carbon cycle feedbacks under 21st century anthropogenic forcing. Earth System Dynamics, 2018, 9, 507-523.	2.7	9
34	Aiming higher to bend the curve of biodiversity loss. Nature Sustainability, 2018, 1, 448-451.	11.5	323
35	Towards defining an environmental investment universe within planetary boundaries. Sustainability Science, 2018, 13, 1031-1044.	2.5	17
36	Policy coherence to achieve the SDGs: using integrated simulation models to assess effective policies. Sustainability Science, 2017, 12, 921-931.	2.5	187

SARAH E CORNELL

#	Article	IF	CITATIONS
37	Closing the loop: Reconnecting human dynamics to Earth System science. Infrastructure Asset Management, 2017, 4, 151-157.	1.2	48
38	Horses for courses: analytical tools to explore planetary boundaries. Earth System Dynamics, 2016, 7, 267-279.	2.7	31
39	Terrestrial nitrogen cycling in Earth system models revisited. New Phytologist, 2016, 210, 1165-1168.	3.5	35
40	From Planetary Boundaries to national fair shares of the global safe operating space — How can the scales be bridged?. Global Environmental Change, 2016, 40, 60-72.	3.6	213
41	Contested Modelling: a Critical Examination of Expert Modelling in Sustainability. Systems Research and Behavioral Science, 2016, 33, 45-63.	0.9	6
42	Response to Comment on "Planetary boundaries: Guiding human development on a changing planet― Science, 2015, 348, 1217-1217.	6.0	69
43	Planetary boundaries: Guiding human development on a changing planet. Science, 2015, 347, 1259855.	6.0	7,124
44	Nitrogen Deposition Effects on Ecosystem Services and Interactions with other Pollutants and Climate Change. , 2014, , 493-505.		5
45	Amundsen, Helene. 2014.Adapting to Change – Community Resilience in Northern Norwegian Municipalities. Norsk Geografisk Tidsskrift, 2014, 68, 318-319.	0.3	0
46	Approaches to defining a planetary boundary for biodiversity. Global Environmental Change, 2014, 28, 289-297.	3.6	236
47	Safe and just operating spaces for regional social-ecological systems. Global Environmental Change, 2014, 28, 227-238.	3.6	311
48	Assessment and Characterisation of the Organic Component of Atmospheric Nitrogen Deposition. , 2014, , 107-116.		0
49	Opening up knowledge systems for better responses to global environmental change. Environmental Science and Policy, 2013, 28, 60-70.	2.4	359
50	The cycling of organic nitrogen through the atmosphere. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130115.	1.8	119
51	Earth System Services—A Global Science Perspective on Ecosystem Services. , 2013, , 85-89.		1
52	On the System Properties of the Planetary Boundaries. Ecology and Society, 2012, 17, .	1.0	23
53	An innovative approach for improving infrastructure resilience. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2012, 165, 27-32.	0.3	10
54	Developing an Integrated History and future of People on Earth (IHOPE). Current Opinion in Environmental Sustainability, 2012, 4, 106-114.	3.1	59

#	Article	IF	CITATIONS
55	Fundamentals of climate change science. , 2012, , 39-71.		7
56	Earth system models. , 2012, , 129-159.		5
57	Climate change impacts and adaptation. , 2012, , 160-201.		15
58	A simulation and optimisation study: Towards a decentralised microgrid, using real world fluctuation data. Energy, 2012, 41, 549-559.	4.5	76
59	Organic nitrogen in the atmosphere — Where does it come from? A review of sources and methods. Atmospheric Research, 2011, 102, 30-48.	1.8	210
60	Foreword: About ESS 2010. Procedia Environmental Sciences, 2011, 6, 1-2.	1.3	0
61	Editorial: key themes and messages from the Earth System Science 2010 conference. Procedia Environmental Sciences, 2011, 6, 3-14.	1.3	1
62	The Rise and Rise of Ecosystem Services: Is "value―the best bridging concept between society and the natural world?. Procedia Environmental Sciences, 2011, 6, 88-95.	1.3	14
63	Atmospheric nitrogen deposition: revisiting the question of the invisible organic fraction. Procedia Environmental Sciences, 2011, 6, 96-103.	1.3	16
64	Carbon dioxide emission scenarios: limitations of the fossil fuel resource. Procedia Environmental Sciences, 2011, 6, 206-215.	1.3	17
65	The evaluation of Earth System Models: discussion summary. Procedia Environmental Sciences, 2011, 6, 216-221.	1.3	2
66	Toward an Integrated History to Guide the Future. Ecology and Society, 2011, 16, .	1.0	58
67	Global and regional analysis of climate and human drivers of wildfire. Science of the Total Environment, 2011, 409, 3472-3481.	3.9	211
68	Atmospheric nitrogen deposition: Revisiting the question of the importance of the organic component. Environmental Pollution, 2011, 159, 2214-2222.	3.7	179
69	Marine ecosystem models for earth systems applications: The MarQUEST experience. Journal of Marine Systems, 2010, 81, 19-33.	0.9	37
70	Improved Understanding of the Earth System and Its Implications: Earth System Science 2010: Global Change, Climate and People: Edinburgh, United Kingdom, 10-13 May 2010. Eos, 2010, 91, 397-397.	0.1	0
71	Developing a systematic "science of the past―to create our future. Global Environmental Change, 2010, 20, 426-427.	3.6	32
72	Integrated Socio-ecological History: Could Looking at the Past Help Direct Society's Future?. International Journal of Interdisciplinary Social Sciences, 2010, 5, 139-148.	0.1	1

SARAH E CORNELL

#	Article	IF	CITATIONS
73	Valuing ecosystem benefits in a dynamic world. Climate Research, 2010, 45, 261-272.	0.4	23
74	Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean. Science, 2008, 320, 893-897.	6.0	964
75	What do recent advances in quantifying climate and carbon cycle uncertainties mean for climate policy?. Environmental Research Letters, 2008, 3, 044002.	2.2	14
76	Teaching against the grain: multiâ€disciplinary teamwork effectively delivers a successful undergraduate unit in sustainable development. Environmental Education Research, 2008, 14, 469-481.	1.6	22
77	Water quality of the Madang Lagoon, Papua New Guinea: A status report. Marine Pollution Bulletin, 2006, 52, 458-465.	2.3	2
78	Towards sustainable flood and coastal management: identifying drivers of, and obstacles to, managed realignment. Land Use Policy, 2005, 22, 129-144.	2.5	77
79	Organic Nitrogen in Precipitation: Real Problem or Sampling Artefact?. Scientific World Journal, The, 2001, 1, 230-237.	0.8	56
80	Nitrogen deposition to the eastern Atlantic Ocean. The importance of south-easterly flow. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 37-49.	0.8	86
81	A laboratory assessment of wetness sensors for leaf, fruit and trunk surfaces. Agricultural and Forest Meteorology, 2000, 102, 263-274.	1.9	19
82	Water-soluble organic nitrogen in atmospheric aerosol: a comparison of UV and persulfate oxidation methods. Atmospheric Environment, 1999, 33, 833-840.	1.9	45
83	Urea in rainwater and atmospheric aerosol. Atmospheric Environment, 1998, 32, 1903-1910.	1.9	87
84	Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature, 1995, 376, 243-246.	13.7	319
85	Earth system science and society. , 0, , 1-38.		0
86	The Earth system feedbacks that matter for contemporary climate. , 0, , 102-128.		3
87	Society's responses and knowledge gaps. , 0, , 245-256.		1