
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9272446/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cross-Linked Chitosan as an Eco-Friendly Binder for High-Performance Wood-Based Fiberboard. International Journal of Polymer Science, 2021, 2021, 1-7.	2.7	6
2	Candle soot nanoparticle-decorated wood for efficient solar vapor generation. Sustainable Energy and Fuels, 2020, 4, 354-361.	4.9	30
3	Muscle-inspired capacitive tactile sensors with superior sensitivity in an ultra-wide stress range. Journal of Materials Chemistry C, 2020, 8, 5913-5922.	5.5	23
4	Cellulose hydrogel functionalized titanate microspheres with self-cleaning for efficient purification of heavy metals in oily wastewater. Cellulose, 2020, 27, 7751-7763.	4.9	15
5	Double-Network Hierarchical-Porous Piezoresistive Nanocomposite Hydrogel Sensors Based on Compressive Cellulosic Hydrogels Deposited with Silver Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 7480-7488.	6.7	48
6	A wood–polypyrrole composite as a photothermal conversion device for solar evaporation enhancement. Journal of Materials Chemistry A, 2019, 7, 20706-20712.	10.3	189
7	Green Construction of an Oil–Water Separator at Room Temperature and Its Promotion to an Adsorption Membrane. Langmuir, 2019, 35, 11071-11079.	3.5	14
8	Preparation and characterization of high-strength and water resistant lignocelluloses based composites bonded by branched polyethylenimine (PEI). International Journal of Biological Macromolecules, 2019, 141, 369-377.	7.5	16
9	Cellulose as an Adhesive for the Synthesis of Carbon Aerogel with a 3D Hierarchical Network Structure for Capacitive Energy Storage. ChemElectroChem, 2019, 6, 2586-2594.	3.4	27
10	Fabrication of Fe3O4-modified lignocellulose composite for microwave absorption via a sol–gel-assisted hot-pressing process. Cellulose, 2019, 26, 5455-5466.	4.9	12
11	WC _{1â^x} oupled 3D Porous Defective g ₃ N ₄ for Efficient Photocatalytic Overall Water Splitting. Solar Rrl, 2019, 3, 1800341.	5.8	38
12	Processing Lignocellulose-Based Composites into an Ultrastrong Structural Material. ACS Nano, 2019, 13, 371-376.	14.6	53
13	One Step Construction of Nitrogen–Carbon Derived from <i>Bradyrhizobium japonicum</i> for Supercapacitor Applications with a Soybean Leaf as a Separator. ACS Sustainable Chemistry and Engineering, 2018, 6, 4695-4704.	6.7	82
14	Layer-by-layer self-assembly of reduced graphene oxide on bamboo timber surface with improved decay resistance. European Journal of Wood and Wood Products, 2018, 76, 1223-1231.	2.9	15
15	"Pickles Method―Inspired Tomato Derived Hierarchical Porous Carbon for High-Performance and Safer Capacitive Output. Journal of the Electrochemical Society, 2018, 165, A1054-A1063.	2.9	12
16	High Mechanical Property of Laminated Electromechanical Sensors by Carbonized Nanolignocellulose/Graphene Composites. ACS Applied Materials & Interfaces, 2018, 10, 7344-7351.	8.0	14
17	Mesopore-dominant nitrogen-doped carbon with a large defect degree and high conductivity via inherent hydroxyapatite-induced self-activation for lithium-ion batteries. RSC Advances, 2018, 8, 12204-12210.	3.6	10
18	The properties of fibreboard based on nanolignocelluloses/CaCO3/PMMA composite synthesized through mechano-chemical method. Scientific Reports, 2018, 8, 5121.	3.3	14

#	Article	IF	CITATIONS
19	Cellulose nanofibers from bamboo and their nanocomposites with polyvinyl alcohol: Preparation and characterization. Polymer Composites, 2018, 39, 2611-2619.	4.6	26
20	Natural cellulose nanofiber extracted from cell wall of bamboo leaf and its derived multifunctional aerogel. Polymer Composites, 2018, 39, 3869-3876.	4.6	18
21	Fabrication of nitrogen-doped porous electrically conductive carbon aerogel from waste cabbage for supercapacitors and oil/water separation. Journal of Materials Science: Materials in Electronics, 2018, 29, 4334-4344.	2.2	48
22	Screening, Synthesis, and QSAR Research on Cinnamaldehyde-Amino Acid Schiff Base Compounds as Antibacterial Agents. Molecules, 2018, 23, 3027.	3.8	12
23	Discarded Biomass Derived Ordered Hierarchical Porous WO ₃ –C as Advanced Electrochemical Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 13897-13906.	6.7	11
24	Preparation of High Mechanical Performance Nano-Fe3O4/Wood Fiber Binderless Composite Boards for Electromagnetic Absorption via a Facile and Green Method. Nanomaterials, 2018, 8, 52.	4.1	28
25	Ultrafine Mn ferrite by anchoring in a cellulose framework for efficient toxic ions capture and fast water/oil separation. Carbohydrate Polymers, 2018, 196, 117-125.	10.2	19
26	Nitrogen, Sulfur, Phosphorous Coâ€doped Interconnected Porous Carbon Nanosheets with High Defect Density for Enhancing Supercapacitor and Lithiumâ€ l on Battery Properties. ChemElectroChem, 2018, 5, 2367-2375.	3.4	40
27	Facile Fabrication of a PDMS@Stearic Acid-Kaolin Coating on Lignocellulose Composites with Superhydrophobicity and Flame Retardancy. Materials, 2018, 11, 727.	2.9	16
28	Lignocellulose-Chitosan-Multiwalled Carbon Nanotube Composites with Improved Mechanical Strength, Dimensional Stability and Fire Retardancy. Polymers, 2018, 10, 341.	4.5	10
29	Fabrication of Superhydrophobic Mg/Al Layered Double Hydroxide (LDH) Coatings on Medium Density Fiberboards (MDFs) with Flame Retardancy. Materials, 2018, 11, 1113.	2.9	19
30	Effect of aluminosilicate on flame-retardant and mechanical properties of lignocellulose composite. Cellulose, 2018, 25, 4167-4177.	4.9	14
31	Improved mould resistance and antibacterial activity of bamboo coated with ZnO/graphene. Royal Society Open Science, 2018, 5, 180173.	2.4	22
32	Self-photodegradation of formaldehyde under visible-light by solid wood modified via nanostructured Fe-doped WO3 accompanied with superior dimensional stability. Journal of Hazardous Materials, 2017, 328, 127-139.	12.4	49
33	A 3D titanate aerogel with cellulose as the adsorption-aggregator for highly efficient water purification. Journal of Materials Chemistry A, 2017, 5, 5813-5819.	10.3	62
34	Biomimetic taro leaf-like films decorated on wood surfaces using soft lithography for superparamagnetic and superhydrophobic performance. Journal of Materials Science, 2017, 52, 7428-7438.	3.7	61
35	Solvothermal fabrication and growth behavior study of spherical MnFe ₂ O ₄ through a bottom-up method on wood substrate with effective microwave absorption. RSC Advances, 2017, 7, 24764-24770.	3.6	13
36	Bio-Inspired nacre-like nanolignocellulose-poly (vinyl alcohol)-TiO2 composite with superior mechanical and photocatalytic properties. Scientific Reports, 2017, 7, 1823.	3.3	27

#	Article	IF	CITATIONS
37	3D assembly based on 2D structure of Cellulose Nanofibril/Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water. Scientific Reports, 2017, 7, 45914.	3.3	114
38	Stress sensitive electricity based on Ag/cellulose nanofiber aerogel for self-reporting. Carbohydrate Polymers, 2017, 168, 265-273.	10.2	38
39	Utilizing cellulose sheets as structure promoter constructing different micro-nano titanate nanotubes networks for green water purification. Carbohydrate Polymers, 2017, 175, 756-764.	10.2	6
40	Endowing graphene with superior cation/anion co-purification and visible photocatalysis performances by in situ deposition of silver compounds. Journal of Materials Chemistry A, 2017, 5, 20903-20910.	10.3	3
41	Naturally three-dimensional laminated porous carbon network structured short nano-chains bridging nanospheres for energy storage. Journal of Materials Chemistry A, 2017, 5, 15759-15770.	10.3	72
42	New Insight on Promoted thermostability of poplar wood modified by MnFe2O4 nanoparticles through the pyrolysis behaviors and kinetic study. Scientific Reports, 2017, 7, 1418.	3.3	6
43	Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation. Materials, 2017, 10, 311.	2.9	49
44	Fabrication of a Nano-ZnO/Polyethylene/Wood-Fiber Composite with Enhanced Microwave Absorption and Photocatalytic Activity via a Facile Hot-Press Method. Materials, 2017, 10, 1267.	2.9	18
45	Hydrothermal Synthesis of Nanooctahedra MnFe2O4 onto the Wood Surface with Soft Magnetism, Fire Resistance and Electromagnetic Wave Absorption. Nanomaterials, 2017, 7, 118.	4.1	31
46	One-Step Preparation of Graphene Oxide/Cellulose Nanofibril Hybrid Aerogel for Adsorptive Removal of Four Kinds of Antibiotics. Journal of Nanomaterials, 2017, 2017, 1-10.	2.7	18
47	Spawns Structure of Rod-Like ZnO Wrapped in Cellulose Nanofibers for Electromagnetic Wave Absorption. Journal of Nanomaterials, 2017, 2017, 1-6. Inorganic Antiflaming Wood Caused by a <mml:math< td=""><td>2.7</td><td>2</td></mml:math<>	2.7	2
48	xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"> <mml:mtext mathvariant="bold">Ti<mml:msub><mml:mrow><mml:mtext mathvariant="bold">O</mml:mtext </mml:mrow><mml:mrow><mml:mtext mathvariant="bold">2</mml:mtext </mml:mrow></mml:msub>-Decorated ZnO Nanorod</mml:mtext 	2.7	9
49	Arrays Coating Prepared by a Facile Hydrothermal Method. Journal of Nanomaterials, 2016, 2016, 1-9. A simple, one-step hydrothermal approach to durable and robust superparamagnetic, superhydrophobic and electromagnetic wave-absorbing wood. Scientific Reports, 2016, 6, 35549.	3.3	60
50	One-step solvothermal deposition of ZnO nanorod arrays on a wood surface for robust superamphiphobic performance and superior ultraviolet resistance. Scientific Reports, 2016, 6, 35505.	3.3	45
51	Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation. Scientific Reports, 2016, 6, 32383.	3.3	70
52	Simple synthesis of MoO ₂ /carbon aerogel anodes for high performance lithium ion batteries from seaweed biomass. RSC Advances, 2016, 6, 106230-106236.	3.6	26
53	Preliminary studies of multi-micro/nanomaterials immobilized on the bamboo timber surface. Journal of the Indian Academy of Wood Science, 2016, 13, 145-151.	0.9	0
54	Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution. Carbohydrate Polymers, 2016, 136, 95-100.	10.2	141

#	Article	IF	CITATIONS
55	A Facile Low-Temperature Hydrothermal Method to Prepare Anatase Titania/Cellulose Aerogels with Strong Photocatalytic Activities for Rhodamine B and Methyl Orange Degradations. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	8
56	Superhydrophobicity, Microwave Absorbing Property of NiFe2O4/Wood Hybrids under Harsh Conditions. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	1
57	Fabrication of Robust Superhydrophobic Bamboo Based on ZnO Nanosheet Networks with Improved Water-, UV-, and Fire-Resistant Properties. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	9
58	Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents. Carbohydrate Polymers, 2015, 123, 150-156.	10.2	143
59	Ultralight and hydrophobic nanofibrillated cellulose aerogels from coconut shell with ultrastrong adsorption properties. Journal of Applied Polymer Science, 2015, 132, .	2.6	43
60	Fabrication of superhydrophobic bamboo timber based on an anatase TiO ₂ film for acid rain protection and flame retardancy. RSC Advances, 2015, 5, 62265-62272.	3.6	45
61	Thermally induced gel from cellulose/NaOH/PEG solution: preparation, characterization and mechanical properties. Applied Physics A: Materials Science and Processing, 2015, 119, 45-48.	2.3	2
62	Synthesis of wood derived nitrogen-doped porous carbon–polyaniline composites for supercapacitor electrode materials. RSC Advances, 2015, 5, 30943-30949.	3.6	73
63	Soy Protein Isolate As Fluid Loss Additive in Bentonite–Water-Based Drilling Fluids. ACS Applied Materials & Interfaces, 2015, 7, 24799-24809.	8.0	78
64	Fabrication of hydrophobic, electrically conductive and flame-resistant carbon aerogels by pyrolysis of regenerated cellulose aerogels. Carbohydrate Polymers, 2015, 118, 115-118.	10.2	63
65	Cross-Linked ZnO Nanowalls Immobilized onto Bamboo Surface and Their Use as Recyclable Photocatalysts. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	6