Kei Hirose

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9272344/kei-hirose-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

108 13,249 229 59 h-index g-index citations papers 6.6 6.62 14,755 247 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
229	The Fe-FeSi phase diagram at Mercury's core conditions <i>Nature Communications</i> , 2022 , 13, 387	17.4	2
228	Stratification in planetary cores by liquid immiscibility in Fe-S-H <i>Nature Communications</i> , 2022 , 13, 644	17.4	1
227	High-Temperature Equation of State of FeH: Implications for Hydrogen in Earth's Inner Core. <i>Geophysical Research Letters</i> , 2022 , 49,	4.9	3
226	The thermal conductivity of the Earth's core and implications for its thermal and compositional evolution. <i>National Science Review</i> , 2021 , 8, nwaa303	10.8	1
225	Experimental evidence for hydrogen incorporation into Earth's core. <i>Nature Communications</i> , 2021 , 12, 2588	17.4	21
224	A cylindrical SiC heater for an externally heated diamond anvil cell to 1500 K. <i>Review of Scientific Instruments</i> , 2021 , 92, 015119	1.7	3
223	Liquidus Phase Relations and Solid-Liquid Partitioning in the Fe-Si-C System Under Core Pressures. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL092681	4.9	3
222	Light elements in the Earth⊠ core. <i>Nature Reviews Earth & Environment</i> , 2021 , 2, 645-658	30.2	14
221	Effect of sulfur on sound velocity of liquid iron under Martian core conditions. <i>Nature Communications</i> , 2020 , 11, 1954	17.4	7
220	Resistivity saturation of hcp Fe-Si alloys in an internally heated diamond anvil cell: A key to assessing the Earth's core conductivity. <i>Earth and Planetary Science Letters</i> , 2020 , 543, 116357	5.3	15
219	Silicon-Depleted Present-Day Earth's Outer Core Revealed by Sound Velocity Measurements of Liquid Fe-Si Alloy. <i>Journal of Geophysical Research: Solid Earth</i> , 2020 , 125, e2020JB019399	3.6	5
218	Stability of fcc phase FeH to 137 GPa. American Mineralogist, 2020, 105, 917-921	2.9	8
217	New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8. <i>Matter and Radiation at Extremes</i> , 2020 , 5, 018403	4.7	44
216	Chemical compositions of the outer core examined by first principles calculations. <i>Earth and Planetary Science Letters</i> , 2020 , 531, 116009	5.3	18
215	Thermodynamical Modeling of Liquid Fe-Si-Mg-O:Molten Magnesium Silicate Release From the Core. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL089218	4.9	8
214	Sound Velocity of Liquid Fe P at High Pressure. <i>Physica Status Solidi (B): Basic Research</i> , 2020 , 257, 20001	7:13	O
213	New pressure-induced phase transition to Co2Si-type Fe2P. <i>American Mineralogist</i> , 2020 , 105, 1752-175	5 2.9	O

(2019-2020)

212	Thermal conductivity of Fe-bearing post-perovskite in the Earth's lowermost mantle. <i>Earth and Planetary Science Letters</i> , 2020 , 547, 116466	5.3	12
211	Anomalous compressibility in (Fe,Al)-bearing bridgmanite: implications for the spin state of iron. <i>Physics and Chemistry of Minerals</i> , 2020 , 47, 1	1.6	1
210	Equation of State of Liquid Iron under Extreme Conditions. <i>Physical Review Letters</i> , 2020 , 124, 165701	7.4	23
209	The stability of Fe5O6 and Fe4O5 at high pressure and temperature. <i>American Mineralogist</i> , 2019 , 104, 1356-1359	2.9	5
208	Melting Temperature of Iron Determined in an Internal-Resistance-Heated Diamond-Anvil Cell. <i>Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu</i> , 2019 , 29, 113-120	О	
207	Melting curve of iron to 290 GPa determined in a resistance-heated diamond-anvil cell. <i>Earth and Planetary Science Letters</i> , 2019 , 510, 45-52	5.3	48
206	Effect of spin transition of iron on the thermal conductivity of (Fe, Al)-bearing bridgmanite. <i>Earth and Planetary Science Letters</i> , 2019 , 520, 188-198	5.3	9
205	Hydrogen Limits Carbon in Liquid Iron. <i>Geophysical Research Letters</i> , 2019 , 46, 5190-5197	4.9	23
204	Static compression of B2 KCl to 230 GPa and its P-V-T equation of state. <i>American Mineralogist</i> , 2019 , 104, 718-723	2.9	12
203	Meltਰrystal density crossover in a deep magma ocean. <i>Earth and Planetary Science Letters</i> , 2019 , 516, 202-211	5.3	30
202	Melting Experiments on Liquidus Phase Relations in the Fe-S-O Ternary System Under Core Pressures. <i>Geophysical Research Letters</i> , 2019 , 46, 5137-5145	4.9	8
201	Composition and pressure dependence of lattice thermal conductivity of (Mg,Fe)O solid solutions. <i>Comptes Rendus - Geoscience</i> , 2019 , 351, 229-235	1.4	4
200	Melting Curve and Equation of State of EFe7N3: Nitrogen in the Core?. <i>Journal of Geophysical Research: Solid Earth</i> , 2019 , 124, 3448-3457	3.6	7
199	Melting experiments on the Fe I binary system up to 255 GPa: Constraints on the carbon content in the Earth's core. <i>Earth and Planetary Science Letters</i> , 2019 , 515, 135-144	5.3	31
198	Melting in the Fe-FeO system to 204 GPa: Implications for oxygen in Earth® core. <i>American Mineralogist</i> , 2019 , 104, 1603-1607	2.9	9
197	Fe2S: The Most Fe-Rich Iron Sulfide at the Earth's Inner Core Pressures. <i>Geophysical Research Letters</i> , 2019 , 46, 11944-11949	4.9	8
196	High-temperature electrical resistivity measurements of hcp iron to Mbar pressure in an internally resistive heated diamond anvil cell. <i>High Pressure Research</i> , 2019 , 39, 579-587	1.6	9
195	Electrical resistivity of fcc phase iron hydrides at high pressures and temperatures. <i>Comptes Rendus - Geoscience</i> , 2019 , 351, 147-153	1.4	14

194	High pressure generation using double-stage diamond anvil technique: problems and equations of state of rhenium. <i>High Pressure Research</i> , 2018 , 38, 107-119	1.6	31
193	Measurements of sound velocity in ironlickel alloys by femtosecond laser pulses in a diamond anvil cell. <i>Physics and Chemistry of Minerals</i> , 2018 , 45, 589-595	1.6	9
192	Core-Exsolved SiO2 Dispersal in the Earth's Mantle. <i>Journal of Geophysical Research: Solid Earth</i> , 2018 , 123, 176-188	3.6	9
191	Isotopic signature of core-derived SiO2. American Mineralogist, 2018, 103, 1161-1164	2.9	2
190	An Experimental Examination of Thermal Conductivity Anisotropy in hcp Iron. <i>Frontiers in Earth Science</i> , 2018 , 6,	3.5	11
189	Magnesium Partitioning Between Earth's Mantle and Core and its Potential to Drive an Early Exsolution Geodynamo. <i>Geophysical Research Letters</i> , 2018 , 45, 13,240	4.9	34
188	Experimental Determination of Eutectic Liquid Compositions in the MgO-SiO2 System to the Lowermost Mantle Pressures. <i>Geophysical Research Letters</i> , 2018 , 45, 9552-9558	4.9	6
187	Melting experiments on FeBiB alloys to core pressures: Silicon in the core?. <i>American Mineralogist</i> , 2018 , 103, 742-748	2.9	14
186	Melting Phase Relations and Element Partitioning in MORB to Lowermost Mantle Conditions. Journal of Geophysical Research: Solid Earth, 2018 , 123, 5515-5531	3.6	11
185	Crystallization of silicon dioxide and compositional evolution of the Earth's core. <i>Nature</i> , 2017 , 543, 99-	192.4	120
184	Thermal conductivity of ferropericlase in the Earth's lower mantle. <i>Earth and Planetary Science Letters</i> , 2017 , 465, 29-37	5.3	46
183	Persistence of strong silica-enriched domains in the Earth lower mantle. <i>Nature Geoscience</i> , 2017 , 10, 236-240	18.3	100
182	Melting experiments on FeHe3S system to 254 GPa. Earth and Planetary Science Letters, 2017, 464, 135-	1 4 .3	51
181	Sound velocity of liquid Fe-Ni-S at high pressure. <i>Journal of Geophysical Research: Solid Earth</i> , 2017 , 122, 3624-3634	3.6	23
180	Phase transition in SiC from zinc-blende to rock-salt structure and implications for carbon-rich extrasolar planets. <i>American Mineralogist</i> , 2017 , 102, 2230-2234	2.9	15
179	Synthesis and crystal structure of LiNbO3-type Mg3Al2Si3O12: A possible indicator of shock conditions of meteorites. <i>American Mineralogist</i> , 2017 , 102, 1947-1952	2.9	9
178	The effect of iron and aluminum incorporation on lattice thermal conductivity of bridgmanite at the		•
_, -	Earth's lower mantle. <i>Earth and Planetary Science Letters</i> , 2017 , 474, 25-31	5.3	20

176	Perovskite in Earth's deep interior. Science, 2017, 358, 734-738	33.3	35
175	The influence of sulfur on the electrical resistivity of hcp iron: Implications for the core conductivity of Mars and Earth. <i>Geophysical Research Letters</i> , 2017 , 44, 8254-8259	4.9	23
174	High-pressure melting experiments on FeBi alloys and implications for silicon as a light element in the core. <i>Earth and Planetary Science Letters</i> , 2016 , 456, 47-54	5.3	45
173	Experimental determination of the electrical resistivity of iron at Earth's core conditions. <i>Nature</i> , 2016 , 534, 95-8	50.4	164
172	Compression of FeBi⊞ alloys to core pressures. <i>Geophysical Research Letters</i> , 2016 , 43, 3686-3692	4.9	19
171	Melting in the FeO SiO 2 system to deep lower-mantle pressures: Implications for subducted Banded Iron Formations. <i>Earth and Planetary Science Letters</i> , 2016 , 440, 56-61	5.3	11
170	Post-stishovite transition in hydrous aluminous SiO2. <i>Physics of the Earth and Planetary Interiors</i> , 2016 , 255, 18-26	2.3	14
169	Phase Transition and Melting in the Deep Lower Mantle. <i>Geophysical Monograph Series</i> , 2016 , 209-224	1.1	
168	Electrical resistivity of substitutionally disordered hcp FeBi and FeBi alloys: Chemically-induced resistivity saturation in the Earth's core. <i>Earth and Planetary Science Letters</i> , 2016 , 451, 51-61	5.3	48
167	Electrical resistivity and thermal conductivity of hcp FeBi alloys under high pressure: Implications for thermal convection in the Earth core. <i>Physics of the Earth and Planetary Interiors</i> , 2015 , 247, 2-10	2.3	39
166	Mineralogy of the Deep Mantle I The Post-Perovskite Phase and its Geophysical Significance 2015 , 85-17	15	12
165	Temperature dependence of the velocity-density relation for liquid metals under high pressure: Implications for the Earth outer core. <i>American Mineralogist</i> , 2015 , 100, 2602-2609	2.9	5
164	Fractional Melting and Freezing in the Deep Mantle and Implications for the Formation of a Basal Magma Ocean. <i>Geophysical Monograph Series</i> , 2015 , 123-142	1.1	10
163	Nature of the Volume Isotope Effect in Ice. <i>Physical Review Letters</i> , 2015 , 115, 173005	7.4	17
162	Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations. <i>Geophysical Research Letters</i> , 2015 , 42, 7513-7520	4.9	46
161	Stability and compressibility of a new iron-nitride Fe7N3 to core pressures. <i>Geophysical Research Letters</i> , 2015 , 42, 5206-5211	4.9	28
160	The structure of FeBi alloy in Earth's inner core. Earth and Planetary Science Letters, 2015, 418, 11-19	5.3	59
159	Carbon-depleted outer core revealed by sound velocity measurements of liquid iron-carbon alloy. <i>Nature Communications</i> , 2015 , 6, 8942	17.4	42

158	Melting experiments on peridotite to lowermost mantle conditions. <i>Journal of Geophysical Research: Solid Earth</i> , 2014 , 119, 4684-4694	3.6	50
157	Identifying the spin transition in Fe2+-rich MgSiO3 perovskite from X-ray diffraction and vibrational spectroscopy. <i>American Mineralogist</i> , 2014 , 99, 1270-1276	2.9	6
156	Deep Earth mineralogy revealed by ultrahigh-pressure experiments. <i>Mineralogical Magazine</i> , 2014 , 78, 437-446	1.7	1
155	Measurements of lattice thermal conductivity of MgO to core-mantle boundary pressures. <i>Geophysical Research Letters</i> , 2014 , 41, 4542-4547	4.9	28
154	Liquid iron-sulfur alloys at outer core conditions by first-principles calculations. <i>Geophysical Research Letters</i> , 2014 , 41, 6712-6717	4.9	34
153	Thermal diffusivities of MgSiO3 and Al-bearing MgSiO3 perovskites. <i>American Mineralogist</i> , 2014 , 99, 94-97	2.9	11
152	Accumulation of Enti-continentlat the base of the mantle and its recycling in mantle plumes. <i>Geochimica Et Cosmochimica Acta</i> , 2014 , 143, 23-33	5.5	6
151	Low core-mantle boundary temperature inferred from the solidus of pyrolite. <i>Science</i> , 2014 , 343, 522-5	33.3	172
150	The high conductivity of iron and thermal evolution of the Earth core. <i>Physics of the Earth and Planetary Interiors</i> , 2013 , 224, 88-103	2.3	209
149	Decomposition of Fe3S above 250 GPa. <i>Geophysical Research Letters</i> , 2013 , 40, 4845-4849	4.9	21
148	The naked planet Earth: Most essential pre-requisite for the origin and evolution of life. <i>Geoscience Frontiers</i> , 2013 , 4, 141-165	6	96
147	High-temperature compression experiments of CaSiO3 perovskite to lowermost mantle conditions and its thermal equation of state. <i>Physics and Chemistry of Minerals</i> , 2013 , 40, 81-91	1.6	15
146	Iron partitioning in pyrolitic lower mantle. <i>Physics and Chemistry of Minerals</i> , 2013 , 40, 107-113	1.6	36
145	Composition and State of the Core. Annual Review of Earth and Planetary Sciences, 2013, 41, 657-691	15.3	194
144	Sound velocities of Na0.4Mg0.6Al1.6Si0.4O4 NAL and CF phases to 73 GPa determined by Brillouin scattering method. <i>Physics and Chemistry of Minerals</i> , 2013 , 40, 195-201	1.6	14
143	High-Pressure, High-Temperature X-ray Diffraction Measurements and the Discovery of Post-Perovskite Phase Transition. <i>Journal of the Physical Society of Japan</i> , 2013 , 82, 021010	1.5	1
142	Acoustic velocity measurements for stishovite across the post-stishovite phase transition under deviatoric stress: Implications for the seismic features of subducting slabs in the mid-mantle. <i>American Mineralogist</i> , 2013 , 98, 2053-2062	2.9	11
141	High-pressure experiments on phase transition boundaries between corundum, Rh2O3(II)- and CaIrO3-type structures in Al2O3. <i>American Mineralogist</i> , 2013 , 98, 335-339	2.9	11

140	NAL phase in K-rich portions of the lower mantle. <i>Geophysical Research Letters</i> , 2013 , 40, 5085-5088	4.9	11
139	A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. <i>Nature</i> , 2012 , 485, 90-4	50.4	186
138	Sound velocity measurements of CaSiO3 perovskite to 133GPa and implications for lowermost mantle seismic anomalies. <i>Earth and Planetary Science Letters</i> , 2012 , 349-350, 1-7	5.3	19
137	Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the corefhantle boundary. <i>Earth and Planetary Science Letters</i> , 2012 , 349-350, 109-115	5.3	84
136	Experimental and theoretical evidence for pressure-induced metallization in FeO with rocksalt-type structure. <i>Physical Review Letters</i> , 2012 , 108, 026403	7∙4	96
135	The structure of Fe-Ni alloy in Earth's inner core. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	41
134	In situ X-ray diffraction measurements of the fccBcp phase transition boundary of an FeNi alloy in an internally heated diamond anvil cell. <i>Physics and Chemistry of Minerals</i> , 2012 , 39, 329-338	1.6	25
133	Compression of Na0.4Mg0.6Al1.6Si0.4O4 NAL and Ca-ferrite-type phases. <i>Physics and Chemistry of Minerals</i> , 2012 , 39, 525-530	1.6	13
132	Crystal structures of (Mg1-x,Fe(x))SiO3 postperovskite at high pressures. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 1035-40	11.5	15
131	Experimental evidence of superionic conduction in H2O ice. <i>Journal of Chemical Physics</i> , 2012 , 137, 194	595	42
131	Experimental evidence of superionic conduction in H2O ice. <i>Journal of Chemical Physics</i> , 2012 , 137, 194 The valence state and partitioning of iron in the Earth's lowermost mantle. <i>Journal of Geophysical Research</i> , 2011 , 116,	5959	43
	The valence state and partitioning of iron in the Earth's lowermost mantle. <i>Journal of Geophysical</i>	.59.5 9	
130	The valence state and partitioning of iron in the Earth's lowermost mantle. <i>Journal of Geophysical Research</i> , 2011 , 116, Thermoelastic property and high-pressure stability of Fe7C3: Implication for iron-carbide in the		43 52
130	The valence state and partitioning of iron in the Earth's lowermost mantle. <i>Journal of Geophysical Research</i> , 2011 , 116, Thermoelastic property and high-pressure stability of Fe7C3: Implication for iron-carbide in the Earth core. <i>American Mineralogist</i> , 2011 , 96, 1158-1165	2.9	43 52
130 129 128	The valence state and partitioning of iron in the Earth's lowermost mantle. <i>Journal of Geophysical Research</i> , 2011 , 116, Thermoelastic property and high-pressure stability of Fe7C3: Implication for iron-carbide in the Earth® core. <i>American Mineralogist</i> , 2011 , 96, 1158-1165 Spin crossover and iron-rich silicate melt in the Earth's deep mantle. <i>Nature</i> , 2011 , 473, 199-202 Stabilities of NAL and Ca-ferrite-type phases on the join NaAlSiO4-MgAl2O4 at high pressure.	2.9	43 52 180
130 129 128	The valence state and partitioning of iron in the Earth's lowermost mantle. <i>Journal of Geophysical Research</i> , 2011 , 116, Thermoelastic property and high-pressure stability of Fe7C3: Implication for iron-carbide in the Earth core. <i>American Mineralogist</i> , 2011 , 96, 1158-1165 Spin crossover and iron-rich silicate melt in the Earth's deep mantle. <i>Nature</i> , 2011 , 473, 199-202 Stabilities of NAL and Ca-ferrite-type phases on the join NaAlSiO4-MgAl2O4 at high pressure. <i>Physics and Chemistry of Minerals</i> , 2011 , 38, 557-560 Pressure-induced structural evolution of pyrite-type SiO2. <i>Physics and Chemistry of Minerals</i> , 2011 ,	2.9 50.4 1.6	43 52 180 21
130 129 128 127 126	The valence state and partitioning of iron in the Earth's lowermost mantle. <i>Journal of Geophysical Research</i> , 2011 , 116, Thermoelastic property and high-pressure stability of Fe7C3: Implication for iron-carbide in the EarthB core. <i>American Mineralogist</i> , 2011 , 96, 1158-1165 Spin crossover and iron-rich silicate melt in the Earth's deep mantle. <i>Nature</i> , 2011 , 473, 199-202 Stabilities of NAL and Ca-ferrite-type phases on the join NaAlSiO4-MgAl2O4 at high pressure. <i>Physics and Chemistry of Minerals</i> , 2011 , 38, 557-560 Pressure-induced structural evolution of pyrite-type SiO2. <i>Physics and Chemistry of Minerals</i> , 2011 , 38, 591-597 Spin crossover, structural change, and metallization in NiAs-type FeO at high pressure. <i>Physical</i>	2.9 50.4 1.6	43 52 180 21

122	The Earth's missing ingredient. <i>Scientific American</i> , 2010 , 302, 76-83	0.5	4
121	High-pressure experimental evidence for metal FeO with normal NiAs-type structure. <i>Physical Review B</i> , 2010 , 82,	3.3	21
120	Simultaneous high-pressure and high-temperature volume measurements of ice VII and its thermal equation of state. <i>Physical Review B</i> , 2010 , 82,	3.3	18
119	Geochemistry. Deep mantle properties. <i>Science</i> , 2010 , 327, 151-2	33.3	4
118	Correction to P ressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications <i>Journal of Geophysical Research</i> , 2010 , 115,		2
117	Deformation of MnGeO3 post-perovskite at lower mantle pressure and temperature. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	21
116	Compression of FeSi, Fe3C, Fe0.95O, and FeS under the core pressures and implication for light element in the Earth's core. <i>Journal of Geophysical Research</i> , 2010 , 115,		96
115	Sound velocity measurement in liquid water up to 25 GPa and 900 K: Implications for densities of water at lower mantle conditions. <i>Earth and Planetary Science Letters</i> , 2010 , 289, 479-485	5.3	23
114	Electrical conductivities of pyrolitic mantle and MORB materials up to the lowermost mantle conditions. <i>Earth and Planetary Science Letters</i> , 2010 , 289, 497-502	5.3	52
113	High-temperature compression of ferropericlase and the effect of temperature on iron spin transition. <i>Earth and Planetary Science Letters</i> , 2010 , 297, 691-699	5.3	49
112	Thermoelastic properties of ice VII and its high-pressure polymorphs: Implications for dynamics of cold slab subduction in the lower mantle. <i>Earth and Planetary Science Letters</i> , 2010 , 299, 474-482	5.3	20
111	The Soret diffusion in laser-heated diamond-anvil cell. <i>Physics of the Earth and Planetary Interiors</i> , 2010 , 180, 172-178	2.3	61
110	The electrical resistance measurements of (Mg,Fe)SiO3 perovskite at high pressures and implications for electronic spin transition of iron. <i>Physics of the Earth and Planetary Interiors</i> , 2010 , 180, 154-158	2.3	25
109	Phase transition boundary between B1 and B8 structures of FeO up to 210GPa. <i>Physics of the Earth and Planetary Interiors</i> , 2010 , 179, 157-163	2.3	55
108	Structural distortion of CaSnO3 perovskite under pressure and the quenchable post-perovskite phase as a low-pressure analogue to MgSiO3. <i>Physics of the Earth and Planetary Interiors</i> , 2010 , 181, 54-	.5 3 .3	44
107	Precise determination of post-stishovite phase transition boundary and implications for seismic heterogeneities in the mid-lower mantle. <i>Physics of the Earth and Planetary Interiors</i> , 2010 , 183, 104-109	9 ^{2.3}	36
106	The structure of iron in Earth's inner core. <i>Science</i> , 2010 , 330, 359-61	33.3	295
105	Comparison of Room-Temperature Pressure Scales Using Simultaneous Volume Measurements with Laser Annealing Technique. <i>Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu</i> , 2010 , 20, 240-243	Ο	

(2008-2009)

104	Review of five years of activity at IFREE /JAMSTEC. <i>JAMSTEC Report of Research and Development</i> , 2009 , 9, 2_43-2_94	О	O
103	Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. <i>Lithos</i> , 2009 , 109, 314-322	2.9	141
102	Experimental study of reaction between perovskite and molten iron to 146 GPa and implications for chemically distinct buoyant layer at the top of the core. <i>Physics and Chemistry of Minerals</i> , 2009 , 36, 355-363	1.6	37
101	Phase relations of ironBilicon alloys at high pressure and high temperature. <i>Physics and Chemistry of Minerals</i> , 2009 , 36, 511-518	1.6	36
100	Determination of post-perovskite phase transition boundary up to 4400lK and implications for thermal structure in D? layer. <i>Earth and Planetary Science Letters</i> , 2009 , 277, 130-136	5.3	114
99	Elasticity of MgO to 130©Pa: Implications for lower mantle mineralogy. <i>Earth and Planetary Science Letters</i> , 2009 , 277, 123-129	5.3	51
98	Development of in situ Brillouin spectroscopy at high pressure and high temperature with synchrotron radiation and infrared laser heating system: Application to the Earth's deep interior. <i>Physics of the Earth and Planetary Interiors</i> , 2009 , 174, 282-291	2.3	30
97	The advanced ion-milling method for preparation of thin film using ion slicer: application to a sample recovered from diamond-anvil cell. <i>Review of Scientific Instruments</i> , 2009 , 80, 013901	1.7	21
96	Chemical equilibrium between ferropericlase and molten iron to 134 GPa and implications for iron content at the bottom of the mantle. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	42
95	Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications. <i>Journal of Geophysical Research</i> , 2008 , 113,		75
94	Simultaneous volume measurements of Au and MgO to 140 GPa and thermal equation of state of Au based on the MgO pressure scale. <i>Physics of the Earth and Planetary Interiors</i> , 2008 , 167, 149-154	2.3	53
93	Simultaneous volume measurements of post-perovskite and perovskite in MgSiO3 and their thermal equations of state. <i>Earth and Planetary Science Letters</i> , 2008 , 265, 515-524	5.3	46
92	Phase transitions in pyrolite and MORB at lowermost mantle conditions: Implications for a MORB-rich pile above the core than the boundary. <i>Earth and Planetary Science Letters</i> , 2008 , 267, 107-117	. 5.3	97
91	Partitioning of iron between perovskite/postperovskite and ferropericlase in the lower mantle. Journal of Geophysical Research, 2008, 113,		66
90	Phase relations of iron and ironBickel alloys up to 300 GPa: Implications for composition and structure of the Earth's inner core. <i>Earth and Planetary Science Letters</i> , 2008 , 273, 379-385	5.3	80
89	Highly intense monochromatic X-ray diffraction facility for high-pressure research at SPring-8. <i>High Pressure Research</i> , 2008 , 28, 163-173	1.6	125
88	New high-pressure B2 phase of FeS above 180 GPa. American Mineralogist, 2008, 93, 492-494	2.9	19
87	The electrical conductivity of post-perovskite in Earth's D" layer. <i>Science</i> , 2008 , 320, 89-91	33.3	108

86	Ferric iron content in (Mg,Fe)SiO3 perovskite and post-perovskite at deep lower mantle conditions. <i>American Mineralogist</i> , 2008 , 93, 1899-1902	2.9	16
85	Discovery of Post-Perovskite and New Views on the Core-Mantle Boundary Region. <i>Elements</i> , 2008 , 4, 183-189	3.8	19
84	Compression of H2O ice to 126 GPa and implications for hydrogen-bond symmetrization: Synchrotron x-ray diffraction measurements and density-functional calculations. <i>Physical Review B</i> , 2008 , 77,	3.3	66
83	Letter. Iron partitioning between perovskite and post-perovskite: A transmission electron microscope study. <i>American Mineralogist</i> , 2008 , 93, 1678-1681	2.9	26
82	Dissociation of CAS phase in the uppermost lower mantle. <i>Physics and Chemistry of Minerals</i> , 2008 , 35, 197-200	1.6	13
81	An Introduction to Post-Perovskite: The Last Mantle Phase Transition. <i>Geophysical Monograph Series</i> , 2007 , 1-7	1.1	2
80	Review of Experimental Studies on Mantle Phase Transitions. <i>Geophysical Monograph Series</i> , 2007 , 9-18	1.1	
79	Discovery of Post-Perovskite Phase Transition and the Nature of D? Layer. <i>Geophysical Monograph Series</i> , 2007 , 19-35	1.1	7
78	Predicting a Global Perovskite and Post-Perovskite Phase Boundary. <i>Geophysical Monograph Series</i> , 2007 , 155-170	1.1	2
77	Mantle Dynamics and the D? Layer: Impacts of the Post Perovskite Phase. <i>Geophysical Monograph Series</i> , 2007 , 217-227	1.1	6
76	A new high-pressure and high-temperature polymorph of FeS. <i>Physics and Chemistry of Minerals</i> , 2007 , 34, 335-343	1.6	18
75	Discovery of post-perovskite phase transition and implications for the nature of the D? layer of the mantle 2007 ,		2
74	The effect of iron spin transition on electrical conductivity of (Mg,Fe)O magnesiowstite. <i>Proceedings of the Japan Academy Series B: Physical and Biological Sciences</i> , 2007 , 83, 97-100	4	27
73	Solubility of FeO in (Mg,Fe)SiO3 perovskite and the post-perovskite phase transition. <i>Physics of the Earth and Planetary Interiors</i> , 2007 , 160, 319-325	2.3	70
72	Sound velocity of MgSiO3 post-perovskite phase: A constraint on the D? discontinuity. <i>Earth and Planetary Science Letters</i> , 2007 , 259, 18-23	5.3	59
71	Phase transition in CaSiO3 perovskite. <i>Earth and Planetary Science Letters</i> , 2007 , 260, 564-569	5.3	55
70	Effect of Iron on the Properties of Post-Perovskite Silicate. <i>Geophysical Monograph Series</i> , 2007 , 37-46	1.1	2
69	Electronic Transitions and Spin States in the Lower Mantle. <i>Geophysical Monograph Series</i> , 2007 , 47-68	1.1	7

68	Lattice-Preferred Orientation of Lower Mantle Materials and Seismic Anisotropy in the D? Layer. <i>Geophysical Monograph Series</i> , 2007 , 69-78	1.1	15
67	Thermodynamic Properties and Stability Field of MgSiO3 Post-Perovskite. <i>Geophysical Monograph Series</i> , 2007 , 79-97	1.1	1
66	The High-Temperature Elasticity of MgSiO3 Post-Perovskite. <i>Geophysical Monograph Series</i> , 2007 , 99-1	13 _{1.1}	11
65	Reconciling the Post-Perovskite Phase with Seismological Observations of Lowermost Mantle Structure. <i>Geophysical Monograph Series</i> , 2007 , 129-153	1.1	19
64	Seismic Anisotropy of Post-Perovskite and the Lowermost Mantle. <i>Geophysical Monograph Series</i> , 2007 , 171-189	1.1	23
63	Constraints on the Presence or Absence of Post-Perovskite in the Lowermost Mantle from Long-Period Seismology. <i>Geophysical Monograph Series</i> , 2007 , 191-216	1.1	5
62	Influence of the Post-Perovskite Transition on Thermal and Thermo-Chemical Mantle Convection. <i>Geophysical Monograph Series</i> , 2007 , 229-247	1.1	9
61	The Dynamical Influences from Physical Properties in the Lower Mantle and Post-Perovskite Phase Transition. <i>Geophysical Monograph Series</i> , 2007 , 249-270	1.1	5
60	Deformation-Induced Mechanical Instabilities at the Core-Mantle Boundary. <i>Geophysical Monograph Series</i> , 2007 , 271-287	1.1	3
59	Post-Perovskite Phase Transition and the Nature of the D? Layer 2007 , 69-82		1
59	High-pressure behavior of MnGeO3 and CdGeO3 perovskites and the post-perovskite phase transition. <i>Physics and Chemistry of Minerals</i> , 2006 , 32, 721-725	1.6	63
	High-pressure behavior of MnGeO3 and CdGeO3 perovskites and the post-perovskite phase	1.6	63
58	High-pressure behavior of MnGeO3 and CdGeO3 perovskites and the post-perovskite phase transition. <i>Physics and Chemistry of Minerals</i> , 2006 , 32, 721-725 Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO3 orthopyroxene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> ,		63
58 57	High-pressure behavior of MnGeO3 and CdGeO3 perovskites and the post-perovskite phase transition. <i>Physics and Chemistry of Minerals</i> , 2006 , 32, 721-725 Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO3 orthopyroxene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 3039-43 Determination of post-perovskite phase transition boundary in MgSiO3 using Au and MgO pressure	11.5	63 74
58 57 56	High-pressure behavior of MnGeO3 and CdGeO3 perovskites and the post-perovskite phase transition. <i>Physics and Chemistry of Minerals</i> , 2006 , 32, 721-725 Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO3 orthopyroxene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 3039-43 Determination of post-perovskite phase transition boundary in MgSiO3 using Au and MgO pressure standards. <i>Geophysical Research Letters</i> , 2006 , 33, n/a-n/a	11.5 4.9	63 74 81
58 57 56 55	High-pressure behavior of MnGeO3 and CdGeO3 perovskites and the post-perovskite phase transition. <i>Physics and Chemistry of Minerals</i> , 2006 , 32, 721-725 Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO3 orthopyroxene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 3039-43 Determination of post-perovskite phase transition boundary in MgSiO3 using Au and MgO pressure standards. <i>Geophysical Research Letters</i> , 2006 , 33, n/a-n/a Postperovskite phase transition and its geophysical implications. <i>Reviews of Geophysics</i> , 2006 , 44,	4.9 23.1	63 74 81 132
58 57 56 55 54	High-pressure behavior of MnGeO3 and CdGeO3 perovskites and the post-perovskite phase transition. <i>Physics and Chemistry of Minerals</i> , 2006 , 32, 721-725 Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO3 orthopyroxene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 3039-43 Determination of post-perovskite phase transition boundary in MgSiO3 using Au and MgO pressure standards. <i>Geophysical Research Letters</i> , 2006 , 33, n/a-n/a Postperovskite phase transition and its geophysical implications. <i>Reviews of Geophysics</i> , 2006 , 44, Unsolved problems in the lowermost mantle. <i>Geophysical Research Letters</i> , 2006 , 33,	11.5 4.9 23.1 4.9	63 74 81 132 33

50	Stability of phase A in antigorite (serpentine) composition determined by in situ X-ray pressure observations. <i>Physics of the Earth and Planetary Interiors</i> , 2005 , 151, 276-289	2.3	50
49	Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	163
48	Solubilities of O and Si in liquid iron in equilibrium with (Mg,Fe)SiO3 perovskite and the light elements in the core. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	113
47	Clapeyron slope of the post-perovskite phase transition in CaIrO3. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	54
46	Phase relations in Mg3Al2Si3O12 to 180 GPa: Effect of Al on post-perovskite phase transition. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	56
45	The pyrite-type high-pressure form of silica. <i>Science</i> , 2005 , 309, 923-5	33.3	133
44	Letter. Stability and equation of state of MgGeO3 post-perovskite phase. <i>American Mineralogist</i> , 2005 , 90, 262-265	2.9	85
43	Phase relations in the system Fe-FeSi at 21 GPa. American Mineralogist, 2004 , 89, 273-276	2.9	66
42	Stability of magnesite and its high-pressure form in the lowermost mantle. <i>Nature</i> , 2004 , 427, 60-3	50.4	215
41	The elasticity of the MgSiO3 post-perovskite phase in the Earth's lowermost mantle. <i>Nature</i> , 2004 , 430, 442-5	50.4	225
40	Post-perovskite phase transition in MgSiO3. <i>Science</i> , 2004 , 304, 855-8	33.3	1078
39	Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. <i>Journal of Geophysical Research</i> , 2004 , 109,		237
38	Segregation of core melts by permeable flow in the lower mantle. <i>Earth and Planetary Science Letters</i> , 2004 , 224, 249-257	5.3	39
37	Trace element partitioning in Earth lower mantle and implications for geochemical consequences of partial melting at the core fantle boundary. <i>Physics of the Earth and Planetary Interiors</i> , 2004 , 146, 249-260	2.3	69
36	High pressure and high temperature phase transitions of FeO. <i>Physics of the Earth and Planetary Interiors</i> , 2004 , 146, 273-282	2.3	46
35	A critical evaluation of pressure scales at high temperatures by in situ X-ray diffraction measurements. <i>Physics of the Earth and Planetary Interiors</i> , 2004 , 143-144, 515-526	2.3	102
34	Phase transition in Al-bearing CaSiO3 perovskite: implications for seismic discontinuities in the lower mantle. <i>Physics of the Earth and Planetary Interiors</i> , 2004 , 145, 67-74	2.3	78
33	Solubilities of nitrogen and noble gases in silicate melts under various oxygen fugacities: implications for the origin and degassing history of nitrogen and noble gases in the earth. <i>Geochimica Et Cosmochimica Acta</i> , 2004 , 68, 387-401	5.5	63

(2001-2004)

Discovery of Post-Perovskite Phase Transition in MgSiO3 and the Earth's Lowermost Mantle. <i>Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu</i> , 2004 , 14, 265-274	Ο	2
Stability of CaCl2-type and ₱bO2-type SiO2 at high pressure and temperature determined by in-situ X-ray measurements. <i>Geophysical Research Letters</i> , 2003 , 30, n/a-n/a	4.9	94
Water solubility in majoritic garnet in subducting oceanic crust. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	34
Phase transition between the CaCl2-type and P bO2-type structures of germanium dioxide. <i>Physical Review B</i> , 2003 , 68,	3.3	26
High-pressure form of pyrite-type germanium dioxide. <i>Physical Review B</i> , 2003 , 68,	3.3	39
Equation of state of hexagonal aluminous phase in basaltic composition to 63 GPa at 300 K. <i>Physics and Chemistry of Minerals</i> , 2002 , 29, 527-531	1.6	24
Phase boundary between rutile-type and CaCl2-type germanium dioxide determined by in situ X-ray observations. <i>American Mineralogist</i> , 2002 , 87, 99-102	2.9	23
Letters. Equation of state of Al-bearing stishovite to 40 GPa at 300 K. <i>American Mineralogist</i> , 2002 , 87, 1486-1489	2.9	15
Water in Earth's lower mantle. Science, 2002 , 295, 1885-7	33.3	147
Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle. <i>Journal of Geophysical Research</i> , 2002 , 107, ECV 3-1-ECV 3-13		230
Subsolidus and melting phase relations of basaltic composition in the uppermostlower mantle. <i>Geochimica Et Cosmochimica Acta</i> , 2002 , 66, 2099-2108	5.5	159
Post-stishovite phase boundary in SiO2 determined by in situ X-ray observations. <i>Earth and Planetary Science Letters</i> , 2002 , 197, 187-192	5.3	77
The compressibility of a natural composition calcium ferrite-type aluminous phase to 70 GPa. <i>Physics of the Earth and Planetary Interiors</i> , 2002 , 131, 311-318	2.3	24
In situ measurements of the majorite-akimotoite-perovskite phase transition boundaries in MgSiO3. <i>Geophysical Research Letters</i> , 2001 , 28, 4351-4354	4.9	64
In situ measurements of the phase transition boundary in Mg3Al2Si3O12: implications for the nature of the seismic discontinuities in the Earth\(\) mantle. Earth and Planetary Science Letters, 2001 , 184, 567-573	5.3	94
Cr-spinel, an excellent micro-container for retaining primitive melts [Implications for a hydrous plume origin for komatiites. <i>Earth and Planetary Science Letters</i> , 2001 , 189, 177-188	5.3	54
Sulfur in the Earth inner core. Earth and Planetary Science Letters, 2001, 193, 509-514	5.3	104
Potential host phase of aluminum and potassium in the Earth lower mantle. <i>American Mineralogist</i> , 2001 , 86, 740-746	2.9	44
	Stability of Cacl2-type and IPbO2-type SiO2 at high pressure and temperature determined by in-situ X-ray measurements. <i>Geophysical Research Letters</i> , 2003, 30, n/a-n/a Water solubility in majoritic garnet in subducting oceanic crust. <i>Geophysical Research Letters</i> , 2003, 30, Phase transition between the Cacl2-type and BbO2-type structures of germanium dioxide. <i>Physical Review B</i> , 2003, 68, High-pressure form of pyrite-type germanium dioxide. <i>Physical Review B</i> , 2003, 68, Equation of state of hexagonal aluminous phase in basaltic composition to 63 GPa at 300 K. <i>Physics and Chemistry of Minerals</i> , 2002, 29, 527-531 Phase boundary between rutile-type and Cacl2-type germanium dioxide determined by in situ X-ray observations. <i>American Mineralogist</i> , 2002, 87, 99-102 Letters. Equation of state of Al-bearing stishovite to 40 GPa at 300 K. <i>American Mineralogist</i> , 2002, 87, 1486-1489 Water in Earth's lower mantle. <i>Science</i> , 2002, 295, 1885-7 Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle. <i>Journal of Geophysical Research</i> , 2002, 107, ECV 3-1-ECV 3-13 Subsolidus and melting phase relations of basaltic composition in the uppermostlower mantle. <i>Geochimica Et Cosmochimica Acta</i> , 2002, 66, 2099-2108 Post-stishovite phase boundary in SiO2 determined by in situ X-ray observations. <i>Earth and Planetary Science Letters</i> , 2002, 197, 187-192 The compressibility of a natural composition calcium ferrite-type aluminous phase to 70 GPa. <i>Physics of the Earth and Planetary Interiors</i> , 2002, 131, 311-318 In situ measurements of the majorite-akimotoite-perovskite phase transition boundaries in MgSiO3. <i>Geophysical Research Letters</i> , 2001, 28, 4351-4354 In situ measurements of the phase transition boundary in Mg3Al2Si3O12: implications for the nature of the seismic discontinuities in the EarthB mantle. <i>Earth and Planetary Science Letters</i> , 2001, 189, 177-188 Sulfur in the EarthB inner core. <i>Earth and Planetary Science Letters</i> , 2001, 193, 509-51	Review of High Pressure Science and Technology/Roatsuryoku No Kagaku To Gijutsu, 2004, 14, 265-274 Stability of CaCl2-type and BPbO2-type SiO2 at high pressure and temperature determined by in-situ X-ray measurements. Geophysical Research Letters, 2003, 30, n/a-n/a Water solubility in majoritic garnet in subducting oceanic crust. Geophysical Research Letters, 2003, 30, n/a-n/a Phase transition between the CaCl2-type and BbO2-type structures of germanium dioxide. Physical Review B, 2003, 68, High-pressure form of pyrite-type germanium dioxide. Physical Review B, 2003, 68, Equation of state of hexagonal aluminous phase in basaltic composition to 63 GPa at 300 K. Physics and Chemistry of Minerals, 2002, 29, 527-531 Phase boundary between rutile-type and CaCl2-type germanium dioxide determined by in situ X-ray observations. American Mineralogist, 2002, 87, 99-102 Letters. Equation of state of Al-bearing stishovite to 40 GPa at 300 K. American Mineralogist, 2002, 87, 1486-1489 Water in Earth's lower mantle. Science, 2002, 295, 1885-7 3333 Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle. Journal of Geophysical Research, 2002, 107, ECV 3-1-ECV 3-13 Subsolidus and melting phase relations of basaltic composition in the uppermostlower mantle. Geochimica Et Cosmochimica Acta, 2002, 66, 2099-2108 Post-stishovite phase boundary in SiO2 determined by in situ X-ray observations. Earth and Planetary Science Letters, 2002, 197, 187-192 The compressibility of a natural composition calcium ferrite-type aluminous phase to 70 GPa. Physics of the Earth and Planetary interiors, 2002, 131, 311-318 In situ measurements of the majorite-akimotolite-perovskite phase transition boundaries in MgSiO3. Geophysical Research Letters, 2001, 28, 4351-4354 49 In situ measurements of the phase transition boundary in Mg3Al2Si3O12: implications for the nature of the selsmic discontinuities in the Earth® mantle. Earth and Planetary Science Letters, 2001, 189, 177-188

14	???????????? 🗗???? 🖟 Ganseki Kobutsu Kagaku, 2001 , 30, 102-103	0.1	1
13	The fate of subducted basaltic crust in the Earth's lower mantle. <i>Nature</i> , 1999 , 397, 53-56	50.4	330
12	The effect of melt segregation on polybaric mantle melting: Estimation from the incremental melting experiments. <i>Physics of the Earth and Planetary Interiors</i> , 1998 , 107, 111-118	2.3	30
11	Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts. <i>Earth and Planetary Science Letters</i> , 1998 , 162, 45-61	5.3	214
10	Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. <i>Geology</i> , 1997 , 25, 42	5	235
9	Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. <i>Geophysical Research Letters</i> , 1997 , 24, 2837-2840	4.9	173
8	Geochemical Variations in Vanuatu Arc Lavas: the Role of Subducted Material and a Variable Mantle Wedge Composition. <i>Journal of Petrology</i> , 1997 , 38, 1331-1358	3.9	215
7	Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas. <i>Earth and Planetary Science Letters</i> , 1995 , 133, 463-473	5.3	382
6	North Fiji Basin basalts and their magma sources: Part I. Incompatible element constraints. <i>Marine Geology</i> , 1994 , 116, 153-178	3.3	52
5	The North Fiji Basin basalts and their magma sources: Part II. Sr-Nd isotopic and trace element constraints. <i>Marine Geology</i> , 1994 , 116, 179-195	3.3	44
4	A new experimental approach for incremental batch melting of peridotite at 1.5 GPa. <i>Geophysical Research Letters</i> , 1994 , 21, 2139-2142	4.9	23
3	Au-Pd sample containers for melting experiments on iron and water bearing systems. <i>European Journal of Mineralogy</i> , 1994 , 6, 381-386	2.2	53
2	Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. <i>Earth and Planetary Science Letters</i> , 1993 , 114, 477-489	5.3	760
1	Experimental Determination of Composition of Melt Formed by Equilibrium Partial Melting of Peridotite at High Pressures Using Aggregates of Diamond Grains <i>Proceedings of the Japan Academy Series B: Physical and Biological Sciences</i> , 1992 , 68, 63-68	4	15