Pengyue Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9272128/publications.pdf Version: 2024-02-01

DENCYLIE 7HAO

#	Article	IF	CITATIONS
1	Fungicide-loaded mesoporous silica nanoparticles promote rice seedling growth by regulating amino acid metabolic pathways. Journal of Hazardous Materials, 2022, 425, 127892.	6.5	22
2	Excellent sustained-release efficacy of herbicide quinclorac with cationic covalent organic frameworks. Chemical Engineering Journal, 2021, 405, 126979.	6.6	50
3	Size Effect of Mesoporous Silica Nanoparticles on Pesticide Loading, Release, and Delivery in Cucumber Plants. Applied Sciences (Switzerland), 2021, 11, 575.	1.3	27
4	Effective and Sustained Control of Soil-Borne Plant Diseases by Biodegradable Polyhydroxybutyrate Mulch Films Embedded with Fungicide of Prothioconazole. Molecules, 2021, 26, 762.	1.7	13
5	Enhanced Fungicidal Efficacy by Co-Delivery of Azoxystrobin and Diniconazole with Cauliflower-Like Metal–Organic Frameworks NH2-Al-MIL-101. International Journal of Molecular Sciences, 2021, 22, 10412.	1.8	17
6	The Use of Folate/Zinc Supramolecular Hydrogels to Increase Droplet Deposition on <i>Chenopodium album</i> L. Leaves. ACS Sustainable Chemistry and Engineering, 2020, 8, 12911-12919.	3.2	10
7	Indoxacarbâ€loaded fluorescent mesoporous silica nanoparticles for effective control of <i>Plutella xylostella</i> L. with decreased detoxification enzymes activities. Pest Management Science, 2020, 76, 3749-3758.	1.7	29
8	Iron-based porous metal–organic frameworks with crop nutritional function as carriers for controlled fungicide release. Journal of Colloid and Interface Science, 2020, 566, 383-393.	5.0	66
9	Natural green-peel orange essential oil enhanced the deposition, absorption and permeation of prochloraz in cucumber. RSC Advances, 2019, 9, 20395-20401.	1.7	10
10	Biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) microcapsules for controlled release of trifluralin with improved photostability and herbicidal activity. Materials Science and Engineering C, 2019, 102, 134-141.	3.8	42
11	Sulfonate-Functionalized Mesoporous Silica Nanoparticles as Carriers for Controlled Herbicide Diquat Dibromide Release through Electrostatic Interaction. International Journal of Molecular Sciences, 2019, 20, 1330.	1.8	36
12	Development of an analytical method for pesticide residues in berries with dispersive solid phase extraction using multiwalled carbon nanotubes and primary secondary amine sorbents. Analytical Methods, 2018, 10, 757-766.	1.3	16
13	Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants. Nanoscale, 2018, 10, 1798-1806.	2.8	103
14	Enhancement of Spirotetramat Transfer in Cucumber Plant Using Mesoporous Silica Nanoparticles as Carriers. Journal of Agricultural and Food Chemistry, 2018, 66, 11592-11600.	2.4	55
15	Synthesis and Characterization of Stimuli-Responsive Poly(2-dimethylamino-ethylmethacrylate)-Grafted Chitosan Microcapsule for Controlled Pyraclostrobin Release. International Journal of Molecular Sciences, 2018, 19, 854.	1.8	41
16	Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release. Chemical Engineering Journal, 2018, 348, 244-254.	6.6	146
17	Synthesis of Pyrimethanil-Loaded Mesoporous Silica Nanoparticles and Its Distribution and Dissipation in Cucumber Plants. Molecules, 2017, 22, 817.	1.7	35
18	Residue determination of glufosinate in plant origin foods using modified Quick Polar Pesticides (QuPPe) method and liquid chromatography coupled with tandem mass spectrometry. Food Chemistry, 2016, 197, 730-736.	4.2	47

Pengyue Zhao

#	Article	IF	CITATIONS
19	Simultaneous enantioselective determination of phenylpyrazole insecticide flufiprole and its chiral metabolite in paddy field ecosystem by ultra-high performance liquid chromatography/tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2016, 121, 261-270.	1.4	14
20	Analysis of triallate residue and degradation rate in wheat and soil by liquid chromatography coupled to tandem mass spectroscopy detection with multi-walled carbon nanotubes. International Journal of Environmental Analytical Chemistry, 2015, 95, 1413-1423.	1.8	6
21	The comparison of dispersive solid phase extraction and multi-plug filtration cleanup method based on multi-walled carbon nanotubes for pesticides multi-residue analysis by liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 2015, 1385, 1-11.	1.8	75
22	Rapid Multiplug Filtration Cleanup with Multiple-Walled Carbon Nanotubes and Gas Chromatography–Triple-Quadruple Mass Spectrometry Detection for 186 Pesticide Residues in Tomato and Tomato Products. Journal of Agricultural and Food Chemistry, 2014, 62, 3710-3725.	2.4	68
23	Multiplug filtration cleanâ€up with multiwalled carbon nanotubes in the analysis of pesticide residues using <scp>LC</scp> – <scp>ESI</scp> â€ <scp>MS</scp> / <scp>MS</scp> . Journal of Separation Science, 2013, 36, 3379-3386.	1.3	43
24	Diafenthiuron residue and decline in pakchoi and soil under field application. Ecotoxicology and Environmental Safety, 2012, 79, 75-79.	2.9	10
25	Dispersive Cleanup of Acetonitrile Extracts of Tea Samples by Mixed Multiwalled Carbon Nanotubes, Primary Secondary Amine, and Graphitized Carbon Black Sorbents. Journal of Agricultural and Food Chemistry, 2012, 60, 4026-4033.	2.4	79
26	Multi-walled carbon nanotubes as alternative reversed-dispersive solid phase extraction materials in pesticide multi-residue analysis with QuEChERS method. Journal of Chromatography A, 2012, 1225, 17-25.	1.8	181
27	Determination of pesticide residues in complex matrices using multiâ€walled carbon nanotubes as reversedâ€dispersive solidâ€phase extraction sorbent. Journal of Separation Science, 2012, 35, 153-158.	1.3	72
28	Residue Dynamics of Clopyralid and Picloram in Rape Plant Rapeseed and Field Soil. Bulletin of Environmental Contamination and Toxicology, 2011, 86, 78-82.	1.3	21