List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9272121/publications.pdf Version: 2024-02-01

TETSUO KONDO

#	Article	IF	CITATIONS
1	Cellulose Nanofibrils Pulverized from Biomass Resources: Past, Present, and Future Perspectives. KONA Powder and Particle Journal, 2023, 40, 109-123.	1.7	7
2	Cellulose nanoanemone: an asymmetric form of nanocellulose. Cellulose, 2022, 29, 2899-2916.	4.9	4
3	Alkali-activation of cellulose nanofibrils to facilitate surface chemical modification under aqueous conditions. Journal of Wood Science, 2022, 68, .	1.9	9
4	Physical characteristics and cell-adhesive properties of in vivo fabricated bacterial cellulose/hyaluronan nanocomposites. Cellulose, 2022, 29, 3239-3251.	4.9	3
5	Characterization of mercerized cellulose nanofibrils prepared by aqueous counter collision process. Journal of Wood Science, 2022, 68, .	1.9	5
6	Preparation of carbon nanoparticles from activated carbon by aqueous counter collision. Journal of Wood Science, 2022, 68, .	1.9	4
7	Facile surface modification of amphiphilic cellulose nanofibrils prepared by aqueous counter collision. Carbohydrate Polymers, 2021, 255, 117342.	10.2	15
8	A combination of aqueous counter collision and TEMPO-mediated oxidation for doubled carboxyl contents of α-chitin nanofibers. Cellulose, 2021, 28, 2167-2181.	4.9	12
9	Characterization of an Amphiphilic Janus-Type Surface in the Cellulose Nanofibril Prepared by Aqueous Counter Collision. Biomacromolecules, 2021, 22, 620-628.	5.4	29
10	Facile size evaluation of cellulose nanofibrils adsorbed on polypropylene substrates using fluorescence microscopy. Cellulose, 2021, 28, 2917-2929.	4.9	12
11	Characterization of dual nano-size effects of ACC-cellulose nanofibrils on crystallization behavior of hydrophilic poly(vinyl alcohol). Journal of Wood Science, 2021, 67, .	1.9	5
12	Localized surface acetylation of aqueous counter collision cellulose nanofibrils using a Pickering emulsion as an interfacial reaction platform. Carbohydrate Polymers, 2021, 261, 117845.	10.2	18
13	Emulsifying Properties of <i>α</i> -Chitin Nanofibrils Prepared by Aqueous Counter Collision. Journal of Fiber Science and Technology, 2021, 77, 203-212.	0.4	4
14	Adsorption of Janus-Type Amphiphilic Cellulose Nanofibrils onto Microspheres of Semicrystalline Polymers. Macromolecules, 2021, 54, 9393-9400.	4.8	13
15	Biofabrication of a Hyaluronan/Bacterial Cellulose Composite Nanofibril by Secretion from Engineered <i>Gluconacetobacter</i> . Biomacromolecules, 2021, 22, 4709-4719.	5.4	11
16	Callose-synthesizing enzymes as membrane proteins of <i>Betula</i> protoplasts secrete bundles of β-1,3-glucan hollow fibrils under Ca ²⁺ -rich and acidic culture conditions. Holzforschung, 2020, 74, 725-732.	1.9	1
17	Surface modification of oriented polysaccharide scaffolds using biotic nanofibers for epidermal cell culture. Cellulose, 2019, 26, 7971-7981.	4.9	4
18	Pickering emulsion stabilization by using amphiphilic cellulose nanofibrils prepared by aqueous counter collision. Carbohydrate Polymers, 2019, 226, 115293.	10.2	51

#	Article	IF	CITATIONS
19	In Vivo Human Cartilage Formation in Three-Dimensional Bioprinted Constructs with a Novel Bacterial Nanocellulose Bioink. ACS Biomaterials Science and Engineering, 2019, 5, 2482-2490.	5.2	55
20	A Building Block of Collagen Fibrils Demonstrated by Sequential Aqueous Counter Collision Process. Journal of Fiber Science and Technology, 2019, 75, 112-118.	0.4	3
21	Dynamics of structural polysaccharides deposition on the plasma-membrane surface of plant protoplasts during cell wall regeneration. Journal of Wood Science, 2019, 65, .	1.9	7
22	Nanocellulose as a natural source for groundbreaking applications in materials science: Today's state. Materials Today, 2018, 21, 720-748.	14.2	625
23	Secretion of a callose hollow fiber from herbaceous plant protoplasts induced by inhibition of cell wall formation. Journal of Wood Science, 2018, 64, 467-476.	1.9	4
24	Nanocellulose–surfactant interactions. Current Opinion in Colloid and Interface Science, 2017, 29, 57-67.	7.4	134
25	Characterization of Individual Hydrogen Bonds in Crystalline Regenerated Cellulose Using Resolved Polarized FTIR Spectra. ACS Omega, 2017, 2, 1469-1476.	3.5	91
26	Thermodynamic effect on interaction between crystalline phases in size-controlled ACC-bacterial nanocellulose and poly(vinyl alcohol). Cellulose, 2017, 24, 5495-5503.	4.9	9
27	Formulation and Composition Effects in Phase Transitions of Emulsions Costabilized by Cellulose Nanofibrils and an Ionic Surfactant. Biomacromolecules, 2017, 18, 4393-4404.	5.4	44
28	Bacterial NanoCellulose Characterization. , 2016, , 59-71.		17
29	Rice Straw Cellulose Nanofibrils via Aqueous Counter Collision and Differential Centrifugation and Their Self-Assembled Structures. ACS Sustainable Chemistry and Engineering, 2016, 4, 1697-1706.	6.7	65
30	A uniaxially oriented nanofibrous cellulose scaffold from pellicles produced by Gluconacetobacter xylinus in dissolved oxygen culture. Carbohydrate Polymers, 2016, 135, 215-224.	10.2	20
31	In Vivo Curdlan/Cellulose Bionanocomposite Synthesis by Genetically Modified <i>Gluconacetobacter xylinus</i> . Biomacromolecules, 2015, 16, 3154-3160.	5.4	45
32	Difference between bamboo- and wood-derived cellulose nanofibers prepared by the aqueous counter collision method. Nordic Pulp and Paper Research Journal, 2014, 29, 69-76.	0.7	52
33	Preparation and characterization of two types of separate collagen nanofibers with different widths using aqueous counter collision as a gentle top-down process. Materials Research Express, 2014, 1, 045016.	1.6	13
34	Secretion of a bundle of (1→3)-β-glucan hollow fibrils from protoplasts of callus suspension under a Ca2+-rich and acidic stressed condition. Holzforschung, 2014, 68, 69-73.	1.9	3
35	Autonomous bottom-up fabrication of three-dimensional nano/microcellulose honeycomb structures, directed by bacterial nanobuilder. Journal of Bioscience and Bioengineering, 2014, 118, 482-487.	2.2	8
36	Green Method for Production of Cellulose Multifilament from Cellulose Carbamate on a Pilot Scale. ACS Sustainable Chemistry and Engineering, 2014, 2, 2363-2370.	6.7	44

#	Article	IF	CITATIONS
37	Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydrate Polymers, 2014, 112, 284-290.	10.2	137
38	Preparation of Aqueous Carbon Material Suspensions by Aqueous Counter Collision. Chemistry Letters, 2014, 43, 483-485.	1.3	11
39	Three-dimensional culture of epidermal cells on ordered cellulose scaffolds. Biofabrication, 2013, 5, 025010.	7.1	9
40	Size effects of cellulose nanofibers for enhancing the crystallization of poly(lactic acid). Journal of Applied Polymer Science, 2013, 128, 1200-1205.	2.6	50
41	Fabrication of highly isotactic polypropylene fibers to substitute asbestos in reinforced cement composites and analysis of the fiber formation mechanism. Journal of Applied Polymer Science, 2013, 130, 981-988.	2.6	1
42	Nano- and microstructures in stretched and non-stretched blend gels of cellulose and hemicelluloses. Holzforschung, 2012, 66, 993-1000.	1.9	3
43	Morphological responses of Betula protoplasts in fiber spinning. Holzforschung, 2012, 66, .	1.9	3
44	Preparation of Single Cellulose Nanofibers Dispersed in Water Using Aqueous Counter Collision Method. Nippon Gomu Kyokaishi, 2012, 85, 400-405.	0.0	6
45	Regulated patterns of bacterial movements based on their secreted cellulose nanofibers interacting interfacially with ordered chitin templates. Journal of Bioscience and Bioengineering, 2012, 114, 113-120.	2.2	13
46	Nematic ordered cellulose templates mediating order-patterned deposition accompanied with synthesis of calcium phosphates. Cellulose, 2012, 19, 81-90.	4.9	15
47	The Use of Weakly Acidic Spent Bathwater Mixed with Electrolyzed Water for Laundry. Journal of Fiber Science and Technology, 2012, 68, 156-163.	0.0	0
48	Sterilization of Spent Bathwater and Washed Fabrics by the Addition of Weakly Acidic Electrolyzed Water. Journal of Fiber Science and Technology, 2012, 68, 149-155.	0.0	0
49	"Nanocellulose―As a Single Nanofiber Prepared from Pellicle Secreted by <i>Gluconacetobacter xylinus</i> Using Aqueous Counter Collision. Biomacromolecules, 2011, 12, 716-720.	5.4	120
50	Favorable 3D-network Formation of Chitin Nanofibers Dispersed in Water Prepared Using Aqueous Counter Collision. Journal of Fiber Science and Technology, 2011, 67, 91-95.	0.0	40
51	Switching Surface Properties of Substrates by Coating with a Cellulose Nanofiber Having a High Adsorbability. Journal of Fiber Science and Technology, 2011, 67, 163-167.	0.0	24
52	Synthesis and properties of regioselectively substituted cellulose cinnamates. ACS Symposium Series, 2010, , 231-241.	0.5	1
53	Structure elucidation of uniformly 13C-labeled bacterial celluloses from different Gluconacetobacter xylinus strains. Cellulose, 2010, 17, 139-151.	4.9	7
54	Molecular orientation in the Nematic Ordered Cellulose film using polarized FTIR accompanied with a vapor-phase deuteration method. Cellulose, 2010, 17, 539-545.	4.9	17

#	Article	IF	CITATIONS
55	Effects of Ultraviolet Radiation on the Color of Compounded Papers Containing Wasted Tea Leaves. Journal of Fiber Science and Technology, 2010, 66, 261-266.	0.0	0
56	Fabrication of Microbial Cellulose Nanofiber Network Sheets Hydrophobically Enhanced by Introduction of a Heat-printed Surface. Journal of Fiber Science and Technology, 2009, 65, 73-79.	0.0	6
57	Preparation of Functional Nonwoven Fabric "KAMIKO" Utilizing Wasted Tea Leaves. Journal of Fiber Science and Technology, 2009, 65, 197-204.	0.0	2
58	Preparation of Repeated Washable Compounded Papers Using Wasted Tea Leaves by Addition of Binder. Journal of Fiber Science and Technology, 2009, 65, 205-211.	0.0	2
59	Influential factors to enhance the moving rate of Acetobacter xylinum due to its nanofiber secretion on oriented templates. Carbohydrate Polymers, 2009, 77, 754-759.	10.2	37
60	What Factors Determine Hierarchical Structure of Microbial Cellulose – Interplay among Physics, Chemistry and Biology –. Macromolecular Symposia, 2009, 279, 110-118.	0.7	21
61	Dye Degradation Effect of Rayon Fibers Containing Titanium Oxide Photocatalyst. Journal of Fiber Science and Technology, 2009, 65, 167-175.	0.0	2
62	Dye Degradation Effect of Rayon Fibers Containing Titanium Oxide Photocatalyst. Journal of Fiber Science and Technology, 2009, 65, 176-183.	0.0	1
63	Protection Effect for Collagen Artificial Skin of UV-cut Materials in Antarctica. Journal of Fiber Science and Technology, 2009, 65, 351-358.	0.0	2
64	Hydrogen bond formation in regioselectively functionalized 3-mono-O-methyl cellulose. Carbohydrate Research, 2008, 343, 2600-2604.	2.3	34
65	Orientation of the alkyl side chains and glucopyranose rings in Langmuir–Blodgett films of a regioselectively substituted cellulose ether. Colloid and Polymer Science, 2008, 286, 707-712.	2.1	6
66	Spinning of a gigantic bundle of hollow fibrils by a spirally moving higher plant protoplast. Planta, 2008, 227, 1187-1197.	3.2	10
67	Effects of Coagulation Conditions on Properties of Multifilament Fibers Based on Dissolution of Cellulose in NaOH/Urea Aqueous Solution. Industrial & Engineering Chemistry Research, 2008, 47, 8676-8683.	3.7	31
68	Structure and Mechanical Properties of Papers Containing Ground Wasted Tealeaves. Journal of Fiber Science and Technology, 2008, 64, 252-258.	0.0	4
69	Antibacterial Activity of Compounded Papers using Wasted Green Tealeaves Produced by Paper-making Method. Journal of Fiber Science and Technology, 2008, 64, 358-365.	0.0	3
70	Preparation of Compounded Papers Using Wasted Tea Leaves. Journal of Fiber Science and Technology, 2007, 63, 256-263.	0.0	3
71	Unique structural characteristics of nematic ordered cellulose—Stability in water and its facile transformation. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2850-2859.	2.1	10

Nematic Ordered Cellulose: Its Structure and Properties. , 2007, , 285-305.

12

#	Article	IF	CITATIONS
73	A Rapid Process for Producing Cellulose Multi-Filament Fibers from a NaOH/Thiourea Solvent System. Macromolecular Rapid Communications, 2006, 27, 1495-1500.	3.9	55
74	Novel Tool for Characterization of Noncrystalline Regions in Cellulose:Â A FTIR Deuteration Monitoring and Generalized Two-Dimensional Correlation Spectroscopy. Biomacromolecules, 2005, 6, 2468-2473.	5.4	38
75	Compression Behavior of Langmuirâ^'Blodgett Monolayers of Regioselectively Substituted Cellulose Ethers with Long Alkyl Side Chains. Langmuir, 2005, 21, 2323-2329.	3.5	27
76	Formation of nematic ordered cellulose and chitin. Cellulose, 2004, 11, 463-474.	4.9	26
77	Fabrication of Honeycomb-Patterned Cellulose Films. Macromolecular Bioscience, 2004, 4, 17-21.	4.1	61
78	Thermally Induced Crystal Transformation from Cellulose l \hat{l} ± to l \hat{l} ² . Polymer Journal, 2003, 35, 155-159.	2.7	112
79	Biodirected epitaxial nanodeposition of polymers on oriented macromolecular templates. Proceedings of the United States of America, 2002, 99, 14008-14013.	7.1	80
80	"Nematic Ordered Cellulose   A Concept of Glucan Chain Association. Biomacromolecules, 2001, 2, 1324-1330.	5.4	129
81	Interchain Hydrogen Bonds in Blend Films of Poly(vinyl alcohol) and Its Derivatives with Poly(ethylene oxide). Macromolecules, 1999, 32, 1949-1955.	4.8	94
82	Change of morphological properties in drawing water-swollen cellulose films prepared from organic solutions. a view of molecular orientation in the drawing process. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 451-459.	2.1	58
83	Quantitative analysis for the cellulose lα crystalline phase in developing wood cell walls. International Journal of Biological Macromolecules, 1999, 24, 37-41.	7.5	63
84	Cellulosic blends with poly(acrylonitrile): characterization of hydrogen bonds using regioselectively methylated cellulose derivatives. Polymer, 1998, 39, 6899-6904.	3.8	17
85	The influence of intramolecular hydrogen bonds on handedness in ethylcellulose /CH2Cl2 liquid crystalline mesophases. Polymer, 1998, 39, 1123-1127.	3.8	18
86	FT-IR Microscopic Analysis of Changing Cellulose Crystalline Structure during Wood Cell Wall Formation. Macromolecules, 1998, 31, 760-764.	4.8	187
87	Interchain Hydrogen Bonds in Cellulose—Poly(vinyl alcohol) Characterized by Differential Scanning Calorimetry and Solid-State NMR Analyses Using Cellulose Model Compounds. ACS Symposium Series, 1998, , 296-305.	0.5	7
88	The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose, 1997, 4, 281-292.	4.9	239
89	Physical gelation process for cellulose whose hydroxyl groups are regioselectively substituted by fluorescent groups. Polymer, 1997, 38, 4201-4205.	3.8	48
90	The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 717-723.	2.1	91

#	Article	IF	CITATIONS
91	Changing Cellulose Crystalline Structure in Forming Wood Cell Walls. Macromolecules, 1996, 29, 6356-6358.	4.8	53
92	A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer, 1996, 37, 393-399.	3.8	269
93	Intermolecular hydrogen bonding in cellulose/poly(ethylene oxide) blends: thermodynamic examination using 2,3-di-O- and 6-O-methylcelluloses as cellulose model compounds. Polymer, 1994, 35, 4423-4428.	3.8	64
94	Gelation of cellulose whose hydroxyl groups are specifically substituted by the fluorescent groups. Polymer Bulletin, 1994, 32, 77-81.	3.3	19
95	Hydrogen bonds in regioselectively substituted cellulose derivatives. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 1229-1236.	2.1	67
96	Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively substituted methylcellulose. Macromolecules, 1994, 27, 210-215.	4.8	177
97	Characterization of the Cleavage of β-Glucosidic Linkage byTrichoderma virideCellulase Using Regioselectively Substituted Methylcelluloses. Chemistry Letters, 1994, 23, 1003-1006.	1.3	11
98	Preparation of 6-O-alkylcelluloses. Carbohydrate Research, 1993, 238, 231-240.	2.3	57
99	Facile method for the preparation of tri-O-(alkyl)cellulose. Journal of Applied Polymer Science, 1992, 45, 417-423.	2.6	41
100	The preparation of O-methyl- and O-ethyl-celluloses having controlled distribution of substituents. Carbohydrate Research, 1991, 220, 173-183.	2.3	81