Ronald B Walter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9271679/publications.pdf Version: 2024-02-01

PONALD R WAITED

#	Article	IF	CITATIONS
1	Particulate hexavalent chromium alters microRNAs in human lung cells that target key carcinogenic pathways. Toxicology and Applied Pharmacology, 2022, 438, 115890.	2.8	9
2	The Developmental and Genetic Architecture of the Sexually Selected Male Ornament of Swordtails. Current Biology, 2021, 31, 911-922.e4.	3.9	24
3	Fixation of allelic gene expression landscapes and expression bias pattern shape the transcriptome of the clonal Amazon molly. Genome Research, 2021, 31, 372-379.	5.5	11
4	Insight to new genes with sexâ€biased to bonyâ€ŧongued fishes: Differentially expressed genes in adult individuals of <i>Arapaima gigas</i> revealed by RNAâ€6eq. Aquaculture Research, 2021, 52, 5617-5629.	1.8	1
5	Oncogenic allelic interaction in <i>Xiphophorus</i> highlights hybrid incompatibility. Proceedings of the United States of America, 2020, 117, 29786-29794.	7.1	21
6	Intra-Strain Genetic Variation of Platyfish (Xiphophorus maculatus) Strains Determines Tumorigenic Trajectory. Frontiers in Genetics, 2020, 11, 562594.	2.3	1
7	Global assessment of organ specific basal gene expression over a diurnal cycle with analyses of gene copies exhibiting cyclic expression patterns. BMC Genomics, 2020, 21, 787.	2.8	Ο
8	Deconvoluting Wavelengths Leading to Fluorescent Light Induced Inflammation and Cellular Stress in Zebrafish (Danio rerio). Scientific Reports, 2020, 10, 3321.	3.3	1
9	Analysis of the putative tumor suppressor gene <i>cdkn2ab</i> in pigment cells and melanoma of <i>Xiphophorus</i> and medaka. Pigment Cell and Melanoma Research, 2019, 32, 248-258.	3.3	15
10	Application of the Transcriptional Disease Signature (TDSs) to Screen Melanoma-Effective Compounds in a Small Fish Model. Scientific Reports, 2019, 9, 530.	3.3	7
11	Expression Signatures of Cisplatin- and Trametinib-Treated Early-Stage Medaka Melanomas. G3: Genes, Genomes, Genetics, 2019, 9, 2267-2276.	1.8	6
12	Fluorescent Light Incites a Conserved Immune and Inflammatory Genetic Response within Vertebrate Organs (Danio Rerio, Oryzias Latipes and Mus Musculus). Genes, 2019, 10, 271.	2.4	6
13	On‣ite Capabilities of a Mobile Laboratory for Aquatic Germplasm Cryopreservation. North American Journal of Aquaculture, 2019, 81, 349-363.	1.4	6
14	C3HeB/FeJ Mice mimic many aspects of gene expression and pathobiological features of human hepatocellular carcinoma. Molecular Carcinogenesis, 2019, 58, 309-320.	2.7	2
15	Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly. Nature Ecology and Evolution, 2018, 2, 669-679.	7.8	117
16	Characterization of basal gene expression trends over a diurnal cycle in Xiphophorus maculatus skin, brain and liver. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 208, 2-11.	2.6	4
17	Comparison of <i>Xiphophorus</i> and human melanoma transcriptomes reveals conserved pathway interactions. Pigment Cell and Melanoma Research, 2018, 31, 496-508.	3.3	21
18	The transcriptional response of skin to fluorescent light exposure in viviparous (Xiphophorus) and oviparous (Danio, Oryzias) fishes. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 208, 77-86.	2.6	11

#	Article	IF	CITATIONS
19	Fluorescent light exposure incites acute and prolonged immune responses in zebrafish (Danio rerio) skin. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 208, 87-95.	2.6	9
20	Exposure to 4100 K fluorescent light elicits sex specific transcriptional responses in Xiphophorus maculatus skin. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 208, 96-104.	2.6	5
21	Expression signatures of early-stage and advanced medaka melanomas. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 208, 20-28.	2.6	11
22	Gene expression variation and parental allele inheritance in a Xiphophorus interspecies hybridization model. PLoS Genetics, 2018, 14, e1007875.	3.5	8
23	Long-term experimental hybridisation results in the evolution of a new sex chromosome in swordtail fish. Nature Communications, 2018, 9, 5136.	12.8	27
24	Waveband specific transcriptional control of select genetic pathways in vertebrate skin (Xiphophorus maculatus). BMC Genomics, 2018, 19, 355.	2.8	4
25	Molecular genetic analysis of the melanoma regulatory locus in <i>Xiphophorus</i> interspecies hybrids. Molecular Carcinogenesis, 2017, 56, 1935-1944.	2.7	21
26	The Novel Evolution of the Sperm Whale Genome. Genome Biology and Evolution, 2017, 9, 3260-3264.	2.5	33
27	Transcriptome assembly and candidate genes involved in nutritional programming in the swordtail fish <i>Xiphophorus multilineatus</i> . PeerJ, 2017, 5, e3275.	2.0	5
28	Germ cell and tumor associated piRNAs in the medaka and Xiphophorus melanoma models. BMC Genomics, 2016, 17, 357.	2.8	13
29	X. couchianus and X. hellerii genome models provide genomic variation insight among Xiphophorus species. BMC Genomics, 2016, 17, 37.	2.8	32
30	Xiphophorus and Medaka Cancer Models. Advances in Experimental Medicine and Biology, 2016, 916, 531-552.	1.6	33
31	Exposure to fluorescent light triggers down regulation of genes involved with mitotic progression in Xiphophorus skin. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2015, 178, 93-103.	2.6	15
32	Molecular genetic response to varied wavelengths of light in Xiphophorus maculatus skin. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2015, 178, 104-115.	2.6	9
33	Workshop report: The medaka model for comparative assessment of human disease mechanisms. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2015, 178, 156-162.	2.6	9
34	Molecular genetic response of Xiphophorus maculatus–X. couchianus interspecies hybrid skin to UVB exposure. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2015, 178, 86-92.	2.6	24
35	Sex-specific molecular genetic response to UVB exposure in Xiphophorus maculatus skin. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2015, 178, 76-85.	2.6	14
36	Novel Method for Analysis of Allele Specific Expression in Triploid Oryzias latipes Reveals Consistent Pattern of Allele Exclusion. PLoS ONE, 2014, 9, e100250.	2.5	7

#	Article	IF	CITATIONS
37	Characterization and differential expression of CPD and 6–4 DNA photolyases in Xiphophorus species and interspecies hybrids. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 163, 77-85.	2.6	14
38	Cortisol release in response to UVB exposure in Xiphophorus fish. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 163, 95-101.	2.6	4
39	UVB-induced gene expression in the skin of Xiphophorus maculatus Jp 163 B. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 163, 86-94.	2.6	15
40	Transcriptomic analysis of cultured whale skin cells exposed to hexavalent chromium [Cr(VI)]. Aquatic Toxicology, 2013, 134-135, 74-81.	4.0	11
41	Alternative strategies for development of a reference transcriptome for quantification of allele specific expression in organisms having sparse genomic resources. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2013, 8, 11-16.	1.0	22
42	The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nature Genetics, 2013, 45, 567-572.	21.4	251
43	Genomic and physiological footprint of the <i>Deepwater Horizon</i> oil spill on resident marsh fishes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20298-20302.	7.1	226
44	Aquatic animal models of human disease: Selected papers from the 5th Conference. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2012, 155, 9-10.	2.6	1
45	Sperm Cryopreservation in Live-Bearing <i>Xiphophorus</i> Fishes: Offspring Production from <i>Xiphophorus variatus</i> and Strategies for Establishment of Sperm Repositories. Zebrafish, 2012, 9, 126-134.	1.1	10
46	Identification of transcriptome SNPs between Xiphophorus lines and species for assessing allele specific gene expression within F1 interspecies hybrids. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2012, 155, 102-108.	2.6	37
47	Offspring production with cryopreserved sperm from a live-bearing fish Xiphophorus maculatus and implications for female fecundity. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2012, 155, 55-63.	2.6	8
48	Characterization of telomeres and telomerase expression in Xiphophorus. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2012, 155, 89-94.	2.6	13
49	Identification of robust hypoxia biomarker candidates from fin of medaka (Oryzias latipes). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2012, 155, 11-17.	2.6	12
50	Production of F ₁ Offspring with Vitrified Sperm from a Live-Bearing Fish, the Green Swordtail <i>Xiphophorus hellerii</i> . Zebrafish, 2011, 8, 167-179.	1.1	28
51	Transcriptome Analysis of Female and Male Xiphophorus maculatus Jp 163 A. PLoS ONE, 2011, 6, e18379.	2.5	45
52	Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquatic Toxicology, 2010, 97, 34-41.	4.0	195
53	Genomic approaches in the identification of hypoxia biomarkers in model fish species. Journal of Experimental Marine Biology and Ecology, 2009, 381, S180-S187.	1.5	42
54	Comparison of gene expression responses to hypoxia in viviparous (Xiphophorus) and oviparous (Oryzias) fishes using a medaka microarray. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2009, 149, 258-265.	2.6	36

#	Article	IF	CITATIONS
55	Aquatic animal models of human disease: Selected papers and recommendations from the 4th Conference. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2009, 149, 121-128.	2.6	9
56	Production of F1 Interspecies Hybrid Offspring with Cryopreserved Sperm from a Live-Bearing Fish, the Swordtail Xiphophorus helleri1. Biology of Reproduction, 2007, 76, 401-406.	2.7	28
57	DNA microarray technology in toxicogenomics of aquatic models: Methods and applications. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2007, 145, 5-14.	2.6	31
58	Perturbation of DNA repair gene expression due to interspecies hybridization. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2007, 145, 156-163.	2.6	6
59	Detection of hypoxia-related proteins in medaka (Oryzias latipes) brain tissue by difference gel electrophoresis and de novo sequencing of 4-sulfophenyl isothiocyanate-derivatized peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology. 2007. 145. 120-133.	2.6	30
60	Multiple tissue gene expression analyses in Japanese medaka (Oryzias latipes) exposed to hypoxia. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2007, 145, 134-144.	2.6	57
61	Induction, Distribution and Repair of UV Photodamage in the Platyfish, Xiphophorus signum¶. Photochemistry and Photobiology, 2007, 72, 260-266.	2.5	3
62	Effect of osmotic immobilization on refrigerated storage and cryopreservation of sperm from a viviparous fish, the green swordtail Xiphophorus helleri. Cryobiology, 2006, 52, 209-218.	0.7	39
63	UV causation of melanoma in Xiphophorus is dominated by melanin photosensitized oxidant production. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4111-4115.	7.1	111
64	Genomic Resources for Xiphophorus Research. Zebrafish, 2006, 3, 11-22.	1.1	14
65	Cloning ofJunAandJunBand Comparison of mRNA Expression Levels in TwoXiphophorusMelanoma Models. Zebrafish, 2006, 3, 53-63.	1.1	5
66	Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of 4-sulfophenyl isothiocyanate-derivatized peptides on AnchorChip? sample supports using the sodium-tolerant matrix 2,4,6-trihydroxyacetophenone and diammonium citrate. Rapid Communications in Mass Spectrometry, 2005, 19, 752-758.	1.5	31
67	Nucleotide Excision Repair Activity Varies Among Murine Spermatogenic Cell Types1. Biology of Reproduction, 2005, 73, 123-130.	2.7	47
68	An in silico mining for simple sequence repeats from expressed sequence tags of zebrafish, medaka, Fundulus, and Xiphophorus. In Silico Biology, 2005, 5, 439-63.	0.9	23
69	The Genetic Map of Xiphophorus Fishes Represented by 24 Multipoint Linkage Groups. Zebrafish, 2004, 1, 287-304.	1.1	19
70	Decreased Levels of (6-4) Photoproduct Excision Repair in Hybrid Fish of the Genus Xiphophorus¶. Photochemistry and Photobiology, 2004, 79, 447.	2.5	35
71	Characterization and Purification of Flap Endonuclease-1(xiFEN-1) fromXiphophorus maculatus. Zebrafish, 2004, 1, 273-285.	1.1	4
72	A Microsatellite Genetic Linkage Map for XiphophorusSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY258640, AY258896 Genetics, 2004, 168, 363-372.	2.9	59

#	Article	IF	CITATIONS
73	DNA repair in hybrid fish of the genus Xiphophorus. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2004, 138, 301-309.	2.6	25
74	DNA polymerase β mRNA and protein expression in Xiphophorus fish. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2004, 138, 325-334.	2.6	5
75	Sperm cryopreservation of green swordtail Xiphophorus helleri, a fish with internal fertilization. Cryobiology, 2004, 48, 295-308.	0.7	46
76	Mutation spectral changes in spermatogenic cells obtained from old mice. DNA Repair, 2004, 3, 495-504.	2.8	22
77	Initial studies on sperm cryopreservation of a live-bearing fish, the green swordtail Xiphophorus helleri. Theriogenology, 2004, 62, 179-194.	2.1	38
78	Decreased Levels of (6–4) Photoproduct Excision Repair in Hybrid Fish of the Genus <i>Xiphophorus</i> [¶] . Photochemistry and Photobiology, 2004, 79, 447-452.	2.5	0
79	Base Excision Repair Is Limited by Different Proteins in Male Germ Cell Nuclear Extracts Prepared from Young and Old Mice. Molecular and Cellular Biology, 2002, 22, 2410-2418.	2.3	57
80	Absence of global genomic cytosine methylation pattern erasure during medaka (Oryzias latipes) early embryo development. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2002, 133, 597-607.	1.6	21
81	Introduction: Aquaria Fish Models of Human Disease. Marine Biotechnology, 2001, 3, S001-S002.	2.4	6
82	Relative Base Excision Repair in Xiphophorus Fish Tissue Extracts. Marine Biotechnology, 2001, 3, S050-S060.	2.4	19
83	Four Resource Centers for Fishes: Specifies, Stocks, and Services. Marine Biotechnology, 2001, 3, S239-S248.	2.4	7
84	Aquaria Fish Models of Human Disease: Reports and Recommendations from the Working Groups. Marine Biotechnology, 2001, 3, S249-S258.	2.4	10
85	Genetic Analysis of Neoplasia Induced by N-Nitroso-N-methylurea in Xiphophorus Hybrid Fish. Marine Biotechnology, 2001, 3, S037-S043.	2.4	24
86	A Proposed Classification Scheme for Xiphophorus Melanomas Based on Histopathologic Analyses. Marine Biotechnology, 2001, 3, S100-S106.	2.4	21
87	Xiphophorus Genetic Linkage Map: Beginnings of Comparative Gene Mapping in Fishes. Marine Biotechnology, 2001, 3, S153-S161.	2.4	11
88	Genetic Analysis of Susceptibility to Spontaneous and UV-Induced Carcinogenesis in Xiphophorus Hybrid Fish. Marine Biotechnology, 2001, 3, S024-S036.	2.4	36
89	Transformation-Associated Recombination (TAR) Cloning of Tumor-Inducing Xmrk2 Gene from Xiphophorus maculatus. Marine Biotechnology, 2001, 3, S168-S176.	2.4	3
90	MNU Induction of Neoplasia in a Platyfish Model. Laboratory Investigation, 2001, 81, 1191-1198.	3.7	21

6

#	Article	IF	CITATIONS
91	Induction, Distribution and Repair of UV Photodamage in the Platyfish, Xiphophorus signum¶. Photochemistry and Photobiology, 2000, 72, 260.	2.5	26
92	Interaction of Oxo-Bridged Vanadium(III) Phenanthroline and Bipyridine Dimers with DNA. Inorganic Chemistry, 2000, 39, 3881-3889.	4.0	37
93	Localization of aCDKN2 gene in linkage group V ofXiphophorus fishes defines it as a candidate for theDIFF tumor suppressor. , 1998, 22, 210-220.		52
94	The Linkage Map of Xiphophorus Fishes. ILAR Journal, 1998, 39, 237-248.	1.8	17
95	Use of Random Amplified Polymorphic DNA (RAPD) for Identification of Largemouth Bass Subspecies and Their Intergrades. Transactions of the American Fisheries Society, 1998, 127, 825-832.	1.4	36
96	Assignment of the TP53 orthologue to a new linkage group (LG XIV) in fish of the genus xiphophorus (Teleostei: Poeciliidae). Cancer Genetics and Cytogenetics, 1996, 88, 144-150.	1.0	12
97	Characterization of the Xiphophorus fish (Teleostei: Poeciliidae) ERCC2/XPD locus. Genomics, 1995, 26, 70-76.	2.9	10
98	The sequence of the Haemophilus influenzae mutB gene indicates it encodes a DNA helicase II-like protein. Gene, 1993, 136, 35-40.	2.2	4
99	Linkage assignment of a DNA sequence (ERCC2L1) homologous to a human DNA repair gene in Xiphophorus fishes: Implications for the evolutionary derivation of human chromosome 19. Genomics, 1991, 10, 1083-1086.	2.9	9
100	Recognition of the DNA helix stabilizing anthramycin-N2 guanine adduct by UVRABC nuclease. Journal of Molecular Biology, 1988, 203, 939-947.	4.2	39
101	Homology-facilitated plasmid transfer in Haemophilus influenzae. Molecular Genetics and Genomics, 1986, 203, 288-295.	2.4	19
102	Effect of glycerol on plasmid transfer in genetically competent Haemophilus influenzae. Molecular Genetics and Genomics, 1986, 203, 296-299.	2.4	39
103	REPAIR OF ULTRAVIOLET-IRRADIATED TRANSFORMING DNA IN A recA MUTANT OF Haemophilus influenzae. Photochemistry and Photobiology, 1983, 37, 391-394.	2.5	5
104	ULTRAVIOLET SENSITIVITY OF THE ADDITION, DELETION and REPLACEMENT OF LONG NONHOMOLOGOUS DNA SEGMENTS BY GENETIC TRANSFORMATION OF HAEMOPHILUS INFLUENZAE. Photochemistry and Photobiology, 1982, 35, 337-341.	2.5	2