Woojin Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9271589/publications.pdf

Version: 2024-02-01

13 papers	163	1478280 6 h-index	1199470 12 g-index
papers	Citations	II-IIIQEX	g-muex
13 all docs	13 docs citations	13 times ranked	233 citing authors

#	Article	IF	CITATIONS
1	Doherty Power Amplifier With Extended High-Efficiency Range Based on the Utilization of Multiple Output Power Back-Off Parameters. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 2258-2270.	2.9	9
2	Compact Load Network Having a Controlled Electrical Length for Doherty Power Amplifier. IEEE Access, 2022, 10, 70440-70446.	2.6	4
3	Mid-Range Wireless Power Transfer System for Various Types of Multiple Receivers Using Power Customized Resonator. IEEE Access, 2021, 9, 45230-45241.	2.6	10
4	Optimized Broadband Load Network for Doherty Power Amplifier Based on Bandwidth Balancing. IEEE Microwave and Wireless Components Letters, 2021, 31, 280-283.	2.0	5
5	Doherty Power Amplifier Based on Asymmetric Cells With Complex Combining Load. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 2336-2344.	2.9	14
6	Optimized Symmetric Two-Stage Doherty Amplifier Design for High Efficiency at Large Power Back-Off. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2021, 32, 635-643.	0.0	1
7	Wideband Linear Power Amplifier of $1.9~\mathrm{GHz}$ GHz Using Mutually Coupled Differential Inductor Based on GaAs HBT Process. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2021, 32, 603-609.	0.0	0
8	3.5 GHz High-Efficiency Asymmetric Doherty Power Amplifier Design Using a Complex Combining Load. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2021, 32, 708-716.	0.0	3
9	Dual-Mode Supply Modulator IC With an Adaptive Quiescent Current Controller for Its Linear Amplifier in LTE Mobile Power Amplifier. IEEE Access, 2021, 9, 147768-147779.	2.6	4
10	3.3 GHz Doherty Power Amplifier having a High-Efficiency at 9 dB Back-Off Based on Outphasing Load Networks. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2021, 32, 971-979.	0.0	2
11	LUT-Based Focal Beamforming System Using 2-D Adaptive Sequential Searching Algorithm for Microwave Power Transfer. IEEE Access, 2020, 8, 196024-196033.	2.6	11
12	5.8 GHz High-Efficiency RF–DC Converter Based on Common-Ground Multiple-Stack Structure. Sensors, 2019, 19, 3257.	2.1	13
13	Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors. Applied Physics Letters, 2013, 102, .	1,5	87