Ruth Pinacho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/927141/publications.pdf

Version: 2024-02-01

759233 713466 42 471 12 21 citations h-index g-index papers 43 43 43 380 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Carbon in silicon: Modeling of diffusion and clustering mechanisms. Journal of Applied Physics, 2002, 92, 1582-1587.	2.5	82
2	Experimental observation of conductance transients in Al/SiNx:H/Si metal-insulator-semiconductor structures. Applied Physics Letters, 1997, 71, 826-828.	3.3	45
3	Modeling arsenic deactivation through arsenic-vacancy clusters using an atomistic kinetic Monte Carlo approach. Applied Physics Letters, 2005, 86, 252103.	3.3	31
4	Physical atomistic kinetic Monte Carlo modeling of Fermi-level effects of species diffusing in silicon. Physical Review B, 2005, 72, .	3.2	27
5	Physical modeling and implementation scheme of native defect diffusion and interdiffusion in SiGe heterostructures for atomistic process simulation. Journal of Applied Physics, 2011, 109, .	2.5	27
6	Sulfur Hydrogen Bonding in Isolated Monohydrates: Furfuryl Mercaptan versus Furfuryl Alcohol. Chemistry - A European Journal, 2018, 24, 6564-6571.	3.3	27
7	Ion-beam amorphization of semiconductors: A physical model based on the amorphous pocket population. Journal of Applied Physics, 2005, 98, 046104.	2.5	21
8	Sulfur hydrogen bonding and internal dynamics in the monohydrates of thenyl mercaptan and thenyl alcohol. Physical Chemistry Chemical Physics, 2020, 22, 12412-12421.	2.8	21
9	Modeling charged defects, dopant diffusion and activation mechanisms for TCAD simulations using kinetic Monte Carlo. Nuclear Instruments & Methods in Physics Research B, 2006, 253, 63-67.	1.4	19
10	Comprehensive model of damage accumulation in silicon. Journal of Applied Physics, 2008, 103, .	2.5	16
11	Physically based modelling of damage, amorphization, and recrystallization for predictive device-size process simulation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 114-115, 151-155.	3.5	14
12	An Efficient Microkinetic Modeling Protocol: Start with Only the Dominant Mechanisms, Adjust All Parameters, and Build the Complete Model Incrementally. ACS Catalysis, 2019, 9, 4804-4809.	11.2	13
13	Fermi-level effects in semiconductor processing: A modeling scheme for atomistic kinetic Monte Carlo simulators. Journal of Applied Physics, 2005, 98, 053709.	2.5	12
14	A DFT-Based Computational-Experimental Methodology for Synthetic Chemistry: Example of Application to the Catalytic Opening of Epoxides by Titanocene. Journal of Organic Chemistry, 2017, 82, 3760-3766.	3.2	12
15	Molecular Recognition, Transient Chirality and Sulfur Hydrogen Bonding in the Benzyl Mercaptan Dimer. Symmetry, 2021, 13, 2022.	2.2	11
16	Dominant iron gettering mechanism in p/p+ silicon wafers. Applied Physics Letters, 2000, 77, 241-243.	3.3	10
17	Physically based modeling of dislocation loops in ion implantation processing in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 404-408.	3. 5	7
18	Detailed electrical characterization of DX centers in Se-doped Alx Galâ^xAs. Journal of Applied Physics, 1997, 82, 4338-4345.	2.5	6

#	Article	IF	CITATIONS
19	Atomistic Modeling of Complex Silicon Processing Scenarios. Materials Research Society Symposia Proceedings, 2000, 610, 1111.	0.1	6
20	lon implant simulations: Kinetic Monte Carlo annealing assessment of the dominant features. Applied Physics Letters, 2004, 84, 4962-4964.	3.3	6
21	Physical modeling of Fermi-level effects for decanano device process simulations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 114-115, 284-289.	3.5	6
22	Dose loss and segregation of boron and arsenic at the Si/SiO2 interface by atomistic kinetic Monte Carlo simulations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 392-396.	3.5	6
23	Atomistic modeling of defect diffusion and interdiffusion in SiGe heterostructures. Thin Solid Films, 2010, 518, 2448-2453.	1.8	6
24	Deep levels in p+-n junctions fabricated by rapid thermal annealing of Mg or Mg/P implanted InP. Journal of Applied Physics, 1997, 81, 3143-3150.	2.5	5
25	Comprehensive, physically based modelling of As in Si. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 114-115, 135-140.	3.5	5
26	The use of extended-defect dissolution as a probe for stress-induced interstitial diffusion anisotropy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 154-155, 260-263.	3.5	5
27	The Effect of Carbon/Self-Interstitial Clusters on Carbon Diffusion in Silicon Modeled by Kinetic Monte Carlo Simulations. Materials Research Society Symposia Proceedings, 2000, 610, 721.	0.1	4
28	Comprehensive modeling of ion-implant amorphization in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 383-385.	3.5	4
29	Rotational spectra of tetracyclic quinolizidine alkaloids: does a water molecule flip sparteine?. Physical Chemistry Chemical Physics, 2017, 19, 17553-17559.	2.8	4
30	Dopant level freezeâ€out and nonideal effects in 6H–SiC epilayer junctions. Journal of Applied Physics, 1996, 79, 310-315.	2.5	3
31	Title is missing!. Journal of Materials Science: Materials in Electronics, 1999, 10, 373-377.	2.2	3
32	Electrical characterization of deep levels existing in Mg-Si- and Mg-P-Si-implanted n InP junctions. Semiconductor Science and Technology, 1998, 13, 389-393.	2.0	2
33	A kinetic Monte Carlo annealing assessment of the dominant features from ion implant simulations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 114-115, 345-348.	3.5	2
34	Thermal emission processes of DX centres in AlxGa1â^'xAs:Si. Solid-State Electronics, 1997, 41, 103-109.	1.4	1
35	Electrical characterization of a He ion implantation-induced deep level existing in p+n InP junctions. Journal of Applied Physics, 1999, 85, 7978-7980.	2.5	1
36	Chirality-Puckering correlation and intermolecular interactions in Sphingosines: Rotational spectroscopy of jaspine B3 and its monohydrate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 267, 120531.	3.9	1

3

#	Article	IF	CITATIONS
37	Electrical characterization of He-ion implantation-induced deep levels in p+n InP junctions. Journal of Applied Physics, 1999, 86, 4855-4860.	2.5	O
38	Title is missing!. Journal of Materials Science: Materials in Electronics, 1999, 10, 413-418.	2.2	0
39	Bimodal distribution of damage morphology generated by ion implantation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 389-391.	3.5	O
40	Ion-implant simulations: The effect of defect spatial correlation on damage accumulation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 386-388.	3.5	0
41	Current Capabilities and Future Prospects of Atomistic Process Simulation. , 2007, , .		O
42	Rotational spectroscopy of organophosphorous chemical agents: cresyl and phenyl saligenin phosphates. Physical Chemistry Chemical Physics, 2019, 21, 16418-16422.	2.8	0