
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9271295/publications.pdf Version: 2024-02-01

DAMELA E KNADD

#	Article	IF	CITATIONS
1	Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nature Medicine, 1999, 5, 943-946.	30.7	412
2	Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat. Glia, 2005, 50, 91-106.	4.9	204
3	Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory. Nature Neuroscience, 2014, 17, 971-980.	14.8	178
4	Synaptic Dysfunction in the Hippocampus Accompanies Learning and Memory Deficits in Human Immunodeficiency Virus Type-1 Tat Transgenic Mice. Biological Psychiatry, 2013, 73, 443-453.	1.3	146
5	HIV-1 Tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines. Glia, 2006, 53, 132-146.	4.9	144
6	Morphine causes rapid increases in glial activation and neuronal injury in the striatum of inducible HIVâ€I tat transgenic mice. Glia, 2008, 56, 1414-1427.	4.9	134
7	Interactive Comorbidity between Opioid Drug Abuse and HIV-1 Tat. American Journal of Pathology, 2010, 177, 1397-1410.	3.8	133
8	Division of astroblasts and oligodendroblasts in postnatal rodent brain: Evidence for separate astrocyte and oligodendrocyte lineages. Glia, 1991, 4, 165-174.	4.9	123
9	Rat Nucleus Accumbens Core Astrocytes Modulate Reward and the Motivation to Self-Administer Ethanol after Abstinence. Neuropsychopharmacology, 2014, 39, 2835-2845.	5.4	115
10	Opioid system diversity in developing neurons, astroglia, and oligodendroglia in the subventricular zone and striatum: Impact on gliogenesis in vivo. Glia, 2001, 36, 78-88.	4.9	113
11	Apoptotic death of striatal neurons induced by human immunodeficiency virus-1 Tat and gp120: Differential involvement of caspase-3 and endonuclease G. Journal of NeuroVirology, 2004, 10, 141-151.	2.1	112
12	Morphine Exacerbates HIV-1 Tat-Induced Cytokine Production in Astrocytes through Convergent Effects on [Ca2+]i, NF-κB Trafficking and Transcription. PLoS ONE, 2008, 3, e4093.	2.5	105
13	Opiate Drug Use and the Pathophysiology of NeuroAIDS. Current HIV Research, 2012, 10, 435-452.	0.5	94
14	Morphine potentiates neurodegenerative effects of HIV-1 Tat through actions at Â-opioid receptor-expressing glia. Brain, 2011, 134, 3616-3631.	7.6	93
15	HIV-1 neuropathogenesis: glial mechanisms revealed through substance abuse. Journal of Neurochemistry, 2007, 100, 567-586.	3.9	84
16	Endogenous opioid system in developing normal and jimpy oligodendrocytes: ? and ? opioid receptors mediate differential mitogenic and growth responses. , 1998, 22, 189-201.		81
17	HIVâ€l Tat and morphine have interactive effects on oligodendrocyte survival and morphology. Glia, 2009, 57, 194-206.	4.9	80
18	Molecular targets of opiate drug abuse in neuro AIDS. Neurotoxicity Research, 2005, 8, 63-80.	2.7	78

#	Article	IF	CITATIONS
19	Cellâ€specific actions of HIVâ€Tat and morphine on opioid receptor expression in glia. Journal of Neuroscience Research, 2008, 86, 2100-2110.	2.9	76
20	Effects of chronic HIV-1 Tat exposure in the CNS: heightened vulnerability of males versus females to changes in cell numbers, synaptic integrity, and behavior. Brain Structure and Function, 2015, 220, 605-623.	2.3	74
21	Interactive HIV-1 Tat and Morphine-Induced Synaptodendritic Injury Is Triggered through Focal Disruptions in Na+ Influx, Mitochondrial Instability, and Ca2+ Overload. Journal of Neuroscience, 2014, 34, 12850-12864.	3.6	73
22	Preferential vulnerability of astroglia and glial precursors to combined opioid and HIV-1 Tat exposure in vitro. European Journal of Neuroscience, 2004, 19, 3171-3182.	2.6	65
23	Cross-talk between microglia and neurons regulates HIV latency. PLoS Pathogens, 2019, 15, e1008249.	4.7	63
24	Regional Heterogeneity and Diversity in Cytokine and Chemokine Production by Astroglia: Differential Responses to HIV-1 Tat, gp120, and Morphine Revealed by Multiplex Analysis. Journal of Proteome Research, 2010, 9, 1795-1804.	3.7	57
25	HIV-1 Tat causes cognitive deficits and selective loss of parvalbumin, somatostatin, and neuronal nitric oxide synthase expressing hippocampal CA1 interneuron subpopulations. Journal of NeuroVirology, 2016, 22, 747-762.	2.1	53
26	Impact of Opiate–HIV-1 Interactions on Neurotoxic Signaling. Journal of NeuroImmune Pharmacology, 2006, 1, 98-105.	4.1	52
27	HIV-Tat elicits microglial glutamate release: Role of NAPDH oxidase and the cystine–glutamate antiporter. Neuroscience Letters, 2010, 485, 233-236.	2.1	51
28	CCR2 mediates increases in glial activation caused by exposure to HIV-1 Tat and opiates. Journal of Neuroimmunology, 2006, 178, 9-16.	2.3	50
29	Interactions of HIV and Drugs of Abuse. International Review of Neurobiology, 2014, 118, 231-313.	2.0	50
30	CCL5/RANTES Gene Deletion Attenuates Opioid-Induced Increases in Glial CCL2/MCP-1 Immunoreactivity and Activation in HIV-1 Tat-Exposed Mice. Journal of NeuroImmune Pharmacology, 2008, 3, 275-285.	4.1	48
31	Selective Vulnerability of Striatal D2 versus D1 Dopamine Receptor-Expressing Medium Spiny Neurons in HIV-1 Tat Transgenic Male Mice. Journal of Neuroscience, 2017, 37, 5758-5769.	3.6	48
32	Morphine and gp120 Toxic Interactions in Striatal Neurons are Dependent on HIV-1 Strain. Journal of NeuroImmune Pharmacology, 2012, 7, 877-891.	4.1	47
33	Morphine efficacy is altered in conditional HIV-1 Tat transgenic mice. European Journal of Pharmacology, 2012, 689, 96-103.	3.5	45
34	5α-reduced progestogens ameliorate mood-related behavioral pathology, neurotoxicity, and microgliosis associated with exposure to HIV-1 Tat. Brain, Behavior, and Immunity, 2016, 55, 202-214.	4.1	42
35	CCR5 mediates HIV-1 Tat-induced neuroinflammation and influences morphine tolerance, dependence, and reward. Brain, Behavior, and Immunity, 2018, 69, 124-138.	4.1	41
36	Opiate Drugs with Abuse Liability Hijack the Endogenous Opioid System to Disrupt Neuronal and Glial Maturation in the Central Nervous System. Frontiers in Pediatrics, 2018, 5, 294.	1.9	40

#	Article	IF	CITATIONS
37	HIV-1 Tat disrupts blood-brain barrier integrity and increases phagocytic perivascular macrophages and microglia in the dorsal striatum of transgenic mice. Neuroscience Letters, 2017, 640, 136-143.	2.1	39
38	A central role for glial CCR5 in directing the neuropathological interactions of HIV-1 Tat and opiates. Journal of Neuroinflammation, 2018, 15, 285.	7.2	39
39	βâ€Chemokine production by neural and glial progenitor cells is enhanced by HIVâ€I Tat: effects on microglial migration. Journal of Neurochemistry, 2010, 114, 97-109.	3.9	37
40	Differential expression and HIV-1 regulation of μ-opioid receptor splice variants across human central nervous system cell types. Journal of NeuroVirology, 2012, 18, 181-190.	2.1	37
41	Endogenous opioids and oligodendroglial function: Possible autocrine/paracrine effects on cell survival and development. Clia, 2001, 35, 156-165.	4.9	36
42	μ-Opioid receptor activation enhances DNA synthesis in immature oligodendrocytes. Brain Research, 1996, 743, 341-345.	2.2	35
43	Effects of chronic expression of the HIV-induced protein, transactivator of transcription, on circadian activity rhythms in mice, with or without morphine. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1680-R1687.	1.8	34
44	Fractalkine/CX3CL1 protects striatal neurons from synergistic morphine and HIV-1 Tat-induced dendritic losses and death. Molecular Neurodegeneration, 2011, 6, 78.	10.8	34
45	Oligodendrocytes Are Targets of HIV-1 Tat: NMDA and AMPA Receptor-Mediated Effects on Survival and Development. Journal of Neuroscience, 2015, 35, 11384-11398.	3.6	32
46	Exploration of bivalent ligands targeting putative mu opioid receptor and chemokine receptor CCR5 dimerization. Bioorganic and Medicinal Chemistry, 2016, 24, 5969-5987.	3.0	31
47	Central HIV-1 Tat exposure elevates anxiety and fear conditioned responses of male mice concurrent with altered mu-opioid receptor-mediated G-protein activation and β-arrestin 2 activity in the forebrain. Neurobiology of Disease, 2016, 92, 124-136.	4.4	31
48	HIVâ€1 alters neural and glial progenitor cell dynamics in the central nervous system: Coordinated response to opiates during maturation. Glia, 2012, 60, 1871-1887.	4.9	30
49	Reduced intraepidermal nerve fibre density, glial activation, and sensory changes in HIV type-1 Tat-expressing female mice: involvement of Tat during early stages of HIV-associated painful sensory neuropathy. Pain Reports, 2018, 3, e654.	2.7	28
50	HIV-1 Tat and opioids act independently to limit antiretroviral brain concentrations and reduce blood–brain barrier integrity. Journal of NeuroVirology, 2019, 25, 560-577.	2.1	27
51	Postmitotic oligodendrocytes generated during postnatal cerebral development are derived from proliferation of immature oligodendrocytes. Glia, 1994, 12, 12-23.	4.9	25
52	Epidermal growth factor promotes oligodendrocyte process formation and regrowth after injury. Experimental Cell Research, 2004, 296, 135-144.	2.6	25
53	Opiate Addiction Therapies and HIV-1 Tat: Interactive Effects on Glial [Ca ²⁺] _i , Oxyradical and Neuroinflammatory Chemokine Production and Correlative Neurotoxicity. Current HIV Research, 2015, 12, 424-434.	0.5	23
54	Pregnane steroidogenesis is altered by HIV-1 Tat and morphine: Physiological allopregnanolone is protective against neurotoxic and psychomotor effects. Neurobiology of Stress, 2020, 12, 100211.	4.0	23

#	Article	IF	CITATIONS
55	HIV-1-Tat Protein Inhibits SC35-mediated Tau Exon 10 Inclusion through Up-regulation of DYRK1A Kinase. Journal of Biological Chemistry, 2015, 290, 30931-30946.	3.4	21
56	Ibudilast attenuates expression of behavioral sensitization to cocaine in male and female rats. Neuropharmacology, 2016, 109, 281-292.	4.1	20
57	Chronic HIV-1 Tat exposure alters anterior cingulate cortico-basal ganglia-thalamocortical synaptic circuitry, associated behavioral control, and immune regulation in male mice. Brain, Behavior, & Immunity - Health, 2020, 5, 100077.	2.5	20
58	Morphine Tolerance and Physical Dependence Are Altered in Conditional HIV-1 Tat Transgenic Mice. Journal of Pharmacology and Experimental Therapeutics, 2015, 356, 96-105.	2.5	19
59	Productive infection of human neural progenitor cells by R5 tropic HIV-1. Aids, 2017, 31, 753-764.	2.2	19
60	GSK3β-activation is a point of convergence for HIV-1 and opiate-mediated interactive neurotoxicity. Molecular and Cellular Neurosciences, 2015, 65, 11-20.	2.2	18
61	Conditional expression of HIVâ€1 tat in the mouse alters the onset and progression of tonic, inflammatory and neuropathic hypersensitivity in a sexâ€dependent manner. European Journal of Pain, 2020, 24, 1609-1623.	2.8	18
62	HIV and opiates dysregulate K+- Clâ^' cotransporter 2 (KCC2) to cause GABAergic dysfunction in primary human neurons and Tat-transgenic mice. Neurobiology of Disease, 2020, 141, 104878.	4.4	18
63	Effects of <scp>HIV</scp> â€l Tat on oligodendrocyte viability are mediated by Ca <scp>MKII</scp> β– <scp>GSK</scp> 3β interactions. Journal of Neurochemistry, 2019, 149, 98-110.	3.9	16
64	Morphine Enhances HIV-1SF162-Mediated Neuron Death and Delays Recovery of Injured Neurites. PLoS ONE, 2014, 9, e100196.	2.5	15
65	Morphine and HIV-1 Tat interact to cause region-specific hyperphosphorylation of tau in transgenic mice. Neuroscience Letters, 2021, 741, 135502.	2.1	14
66	Cell-specific loss of κ-opioid receptors in oligodendrocytes of the dysmyelinating jimpy mouse. Neuroscience Letters, 2009, 451, 114-118.	2.1	13
67	PTEN gene silencing prevents HIV-1 gp120IIIB-induced degeneration of striatal neurons. Journal of NeuroVirology, 2011, 17, 41-49.	2.1	13
68	Chronic HIV-1 Tat and HIV Reduce Rbfox3/NeuN: Evidence for Sex- Related Effects. Current HIV Research, 2015, 13, 10-20.	0.5	13
69	Escalating morphine dosing in HIV-1 Tat transgenic mice with sustained Tat exposure reveals an allostatic shift in neuroinflammatory regulation accompanied by increased neuroprotective non-endocannabinoid lipid signaling molecules and amino acids. Journal of Neuroinflammation, 2020, 17, 345.	7.2	13
70	HIV-1 Tat and Morphine Differentially Disrupt Pyramidal Cell Structure and Function and Spatial Learning in Hippocampal Area CA1: Continuous versus Interrupted Morphine Exposure. ENeuro, 2021, 8, ENEURO.0547-20.2021.	1.9	13
71	The pH of jimpy glia is increased: Intracellular measurements using fluorescent laser cytometry. International Journal of Developmental Neuroscience, 1993, 11, 215-226.	1.6	12
72	Epigenetic factors up-regulate expression of myelin proteins in the dysmyelinating jimpy mutant mouse.		11

Epigenetic factors up , 1996, 29, 138-150. 72

#	Article	IF	CITATIONS
73	Restoration of KCC2 Membrane Localization in Striatal Dopamine D2 Receptor-Expressing Medium Spiny Neurons Rescues Locomotor Deficits in HIV Tat-Transgenic Mice. ASN Neuro, 2021, 13, 175909142110220.	2.7	9
74	HIV-1 Tat and morphine decrease murine inter-male social interactions and associated oxytocin levels in the prefrontal cortex, amygdala, and hypothalamic paraventricular nucleus. Hormones and Behavior, 2021, 133, 105008.	2.1	9
75	Structure-Based Design and Development of Chemical Probes Targeting Putative MOR-CCR5 Heterodimers to Inhibit Opioid Exacerbated HIV-1 Infectivity. Journal of Medicinal Chemistry, 2021, 64, 7702-7723.	6.4	8
76	Neurodegeneration Within the Amygdala Is Differentially Induced by Opioid and HIV-1 Tat Exposure. Frontiers in Neuroscience, 2022, 16, .	2.8	7
77	HIV-1 Tat Inhibits Autotaxin Lysophospholipase D Activity and Modulates Oligodendrocyte Differentiation. ASN Neuro, 2016, 8, 175909141666961.	2.7	5
78	Opioid system diversity in developing neurons, astroglia, and oligodendroglia in the subventricular zone and striatum: Impact on gliogenesis in vivo. Glia, 2001, 36, 78-88.	4.9	4
79	HIV-1 Tat regulates the expression of the dcw operon and stimulates the proliferation of bacteria. Microbial Pathogenesis, 2016, 90, 34-40.	2.9	1
80	Opioids, Astroglial Chemokines, Microglial Reactivity, and Neuronal Injury in HIV-1 Encephalitis. , 2010, , 353-377.		1
81	HIV-1 Tat reduces apical dendritic spine density throughout the trisynaptic pathway in the hippocampus of male transgenic mice. Neuroscience Letters, 2022, 782, 136688.	2.1	1
82	Progressive Degeneration and Adaptive Excitability in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons Exposed to HIV-1 Tat and Morphine. Cellular and Molecular Neurobiology, 0, , .	3.3	1
83	Dendritic pathology and neuronal injury induced by Tat and opiates in a transgenic model of HIVâ€1 encephalitis. FASEB Journal, 2008, 22, 717.1.	0.5	Ο
84	Activation of P2X4 Receptors on Glia is Necessary for Opioid or HIVâ€1 Associated Neurodegeneration. FASEB Journal, 2013, 27, lb513.	0.5	0
85	Chloride channels with CLC-1-like properties differentially regulate the excitability of dopamine receptor D1- and D2-expressing striatal medium spiny neurons. American Journal of Physiology - Cell Physiology, 2022, , .	4.6	0
86	Cross-talk between microglia and neurons regulates HIV latency. , 2019, 15, e1008249.		0
87	Cross-talk between microglia and neurons regulates HIV latency. , 2019, 15, e1008249.		0

88 Cross-talk between microglia and neurons regulates HIV latency. , 2019, 15, e1008249.