
Sonu Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9271039/publications.pdf Version: 2024-02-01

SONUKUMAR

#	Article	IF	CITATIONS
1	Synthetic polymer-derived single-network inks/bioinks for extrusion-based 3D printing towards bioapplications. Materials Advances, 2021, 2, 6928-6941.	5.4	9
2	3D Bioprinting of Nature-Inspired Hydrogel Inks Based on Synthetic Polymers. ACS Applied Polymer Materials, 2021, 3, 3685-3701.	4.4	20
3	Peptide-induced RAFT polymerization <i>via</i> an amyloid-β _{17–20} -based chain transfer agent. Soft Matter, 2020, 16, 6964-6968.	2.7	5
4	Bifunctional Peptide–Polymer Conjugate-Based Fibers via a One-Pot Tandem Disulfide Reduction Coupled to a Thio-Bromo "Click―Reaction. ACS Omega, 2020, 5, 19020-19028.	3.5	4
5	Thioâ€Bromo "Click―Reaction Derived Polymer–Peptide Conjugates for Their Selfâ€Assembled Fibrillar Nanostructures. Macromolecular Bioscience, 2020, 20, 2000048.	4.1	9
6	Oneâ€Pot Synthesis of Thermoresponsive Amyloidogenic Peptide–Polymer Conjugates via Thio–Bromo "Click―Reaction of RAFT Polymers. Macromolecular Rapid Communications, 2018, 39, 1700507.	3.9	19
7	A <i>β</i> _{17–20} Peptideâ€Guided Structuring of Polymeric Conjugates and Their pHâ€Triggered Dynamic Response. Macromolecular Bioscience, 2015, 15, 1447-1456.	4.1	17
8	Carbohydrate-Conjugated Amino Acid-Based Fluorescent Block Copolymers: Their Self-Assembly, pH Responsiveness, and/or Lectin Recognition. Langmuir, 2015, 31, 9422-9431.	3.5	28
9	Controlled RAFT synthesis of side-chain oleic acid containing polymers and their post-polymerization functionalization. RSC Advances, 2014, 4, 56415-56423.	3.6	28
10	Fluorescent labelled dual-stimuli (pH/thermo) responsive self-assembled side-chain amino acid based polymers. Polymer, 2014, 55, 824-832.	3.8	41
11	Triazoleâ€Tailored Guanosine Dinucleosides as Biomimetic Ion Channels to Modulate Transmembrane Potential. Chemistry - A European Journal, 2014, 20, 3023-3028.	3.3	24
12	Controlled synthesis of β-sheet polymers based on side-chain amyloidogenic short peptide segments <i>via</i> RAFT polymerization. Polymer Chemistry, 2014, 5, 6039-6050.	3.9	18
13	Controlled synthesis of pH responsive cationic polymers containing side-chain peptide moieties viaRAFT polymerization and their self-assembly. Journal of Materials Chemistry B, 2013, 1, 946-957.	5.8	50
14	Side-Chain Amino-Acid-Based pH-Responsive Self-Assembled Block Copolymers for Drug Delivery and Gene Transfer. Langmuir, 2013, 29, 15375-15385.	3.5	57
15	Cationic methacrylate polymers containing chiral amino acid moieties: controlled synthesis via RAFT polymerization. Polymer Chemistry, 2012, 3, 1239.	3.9	86