
Bing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9270969/publications.pdf Version: 2024-02-01

RINC ZHANC

#	Article	IF	CITATIONS
1	Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Analytica Chimica Acta, 2013, 758, 1-18.	2.6	409
2	DNA-Based Hybridization Chain Reaction for Amplified Bioelectronic Signal and Ultrasensitive Detection of Proteins. Analytical Chemistry, 2012, 84, 5392-5399.	3.2	381
3	Au(III)-promoted magnetic molecularly imprinted polymer nanospheres for electrochemical determination of streptomycin residues in food. Biosensors and Bioelectronics, 2013, 41, 551-556.	5.3	91
4	Anodicâ€Stripping Voltammetric Immunoassay for Ultrasensitive Detection of Lowâ€Abundance Proteins Using Quantum Dot Aggregated Hollow Microspheres. Chemistry - A European Journal, 2013, 19, 2496-2503.	1.7	91
5	Electrochemical immunosensor for carcinoembryonic antigen based on nanosilver-coated magnetic beads and gold-graphene nanolabels. Talanta, 2012, 91, 95-102.	2.9	79
6	Hemin/G-quadruplex-based DNAzyme concatamers as electrocatalysts and biolabels for amplified electrochemical immunosensing of IgG1. Chemical Communications, 2012, 48, 8180.	2.2	72
7	Proximity Ligation Assay with Three-Way Junction-Induced Rolling Circle Amplification for Ultrasensitive Electronic Monitoring of Concanavalin A. Analytical Chemistry, 2014, 86, 7773-7781.	3.2	70
8	Multifunctional Gold–Silica Nanostructures for Ultrasensitive Electrochemical Immunoassay of Streptomycin Residues. ACS Applied Materials & Interfaces, 2011, 3, 4668-4676.	4.0	69
9	Novel Electrochemical Immunoassay for Quantitative Monitoring of Biotoxin Using Target-Responsive Cargo Release from Mesoporous Silica Nanocontainers. Analytical Chemistry, 2013, 85, 9245-9252.	3.2	68
10	Photoresponsive colorimetric immunoassay based on chitosan modified AgI/TiO2 heterojunction for highly sensitive chloramphenicol detection. Biosensors and Bioelectronics, 2017, 87, 579-586.	5.3	66
11	Synthesis of 3-Sulfenylated Coumarins: BF ₃ ·Et ₂ O-Mediated Electrophilic Cyclization of Aryl Alkynoates Using <i>N</i> -Sulfanylsuccinimides. Journal of Organic Chemistry, 2016, 81, 11297-11304.	1.7	60
12	Redox and catalysis â€~all-in-one' infinite coordination polymer for electrochemical immunosensor of tumor markers. Biosensors and Bioelectronics, 2015, 64, 6-12.	5.3	58
13	Displacement-type Quartz Crystal Microbalance Immunosensing Platform for Ultrasensitive Monitoring of Small Molecular Toxins. Analytical Chemistry, 2013, 85, 6958-6966.	3.2	54
14	GoldMag nanocomposite-functionalized graphene sensing platform for one-step electrochemical immunoassay of alpha-fetoprotein. Biosensors and Bioelectronics, 2011, 28, 174-180.	5.3	52
15	A New Electrochemical Biosensor for Determination of Hydrogen Peroxide in Food Based on Wellâ€Dispersive Gold Nanoparticles on Graphene Oxide. Electroanalysis, 2011, 23, 1821-1829.	1.5	52
16	Pt NPs and DNAzyme functionalized polymer nanospheres as triple signal amplification strategy for highly sensitive electrochemical immunosensor of tumour marker. Biosensors and Bioelectronics, 2016, 86, 156-163.	5.3	51
17	Biotin-avidin-conjugated metal sulfide nanoclusters for simultaneous electrochemical immunoassay of tetracycline and chloramphenicol. Mikrochimica Acta, 2014, 181, 257-262.	2.5	50
18	Poly(o-phenylenediamine)-carried nanogold particles as signal tags for sensitive electrochemical immunoassay of prolactin. Analytica Chimica Acta, 2012, 728, 18-25.	2.6	48

BING ZHANG

#	Article	IF	CITATIONS
19	Simultaneous Multiplexed Stripping Voltammetric Monitoring of Marine Toxins in Seafood Based on Distinguishable Metal Nanocluster-Labeled Molecular Tags. Journal of Agricultural and Food Chemistry, 2012, 60, 8974-8982.	2.4	44
20	Nickel-functionalized reduced graphene oxide with polyaniline for non-enzymatic glucose sensing. Mikrochimica Acta, 2015, 182, 625-631.	2.5	43
21	Nanogold-functionalized magnetic beads with redox activity for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Analytica Chimica Acta, 2012, 711, 17-23.	2.6	40
22	Additional Molecular Biological Amplification Strategy for Enhanced Sensitivity of Monitoring Low-Abundance Protein with Dual Nanotags. ACS Applied Materials & Interfaces, 2013, 5, 4479-4485.	4.0	40
23	Nanogold–polyaniline–nanogold microspheres-functionalized molecular tags for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Analytica Chimica Acta, 2012, 738, 76-84.	2.6	36
24	Fe3+ doped ZnO-Ag photocatalyst for photoelectrochemical sensing platform of ultrasensitive Hg2+ detection using exonuclease III-assisted target recycling and DNAzyme-catalyzed amplification. Sensors and Actuators B: Chemical, 2018, 255, 2531-2537.	4.0	36
25	Synthesis of patterned nanogold and mesoporous CoFe2O4 nanoparticle assemblies and their application in clinical immunoassays. Nanoscale, 2011, 3, 2220.	2.8	35
26	Amplified electrochemical sensing of lead ion based on DNA-mediated self-assembly-catalyzed polymerization. Biosensors and Bioelectronics, 2015, 69, 230-234.	5.3	35
27	Sensitive detection of hydrogen peroxide in foodstuff using an organic–inorganic hybrid multilayer-functionalized graphene biosensing platform. Mikrochimica Acta, 2011, 174, 137-144.	2.5	33
28	Target-regulated proximity hybridization with three-way DNA junction for in situ enhanced electronic detection of marine biotoxin based on isothermal cycling signal amplification strategy. Biosensors and Bioelectronics, 2015, 69, 241-248.	5.3	31
29	A simple and fast chromogenic reaction based on Ag3PO4/Ag nanocomposite for tumor marker detection. Talanta, 2017, 175, 229-234.	2.9	29
30	Competitive-type displacement reaction for direct potentiometric detection of low-abundance protein. Biosensors and Bioelectronics, 2014, 53, 465-471.	5.3	27
31	Equilibrium and dynamic surface tension properties of Gemini quaternary ammonium salt surfactants with hydroxyl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 500, 230-238.	2.3	24
32	One-step electrochemical immunoassay of biomarker based on nanogold-functionalized graphene sensing platform. Analytical Methods, 2011, 3, 1615.	1.3	23
33	An omega-like DNA nanostructure utilized for small molecule introduction to stimulate formation of DNAzyme–aptamer conjugates. Chemical Communications, 2014, 50, 1900-1902.	2.2	21
34	NiCoBP-doped carbon nanotube hybrid: A novel oxidase mimetic system for highly efficient electrochemical immunoassay. Analytica Chimica Acta, 2014, 851, 49-56.	2.6	19
35	Cleavage of Metal-Ion-Induced DNAzymes Released from Nanolabels for Highly Sensitive and Specific Immunoassay. Bioconjugate Chemistry, 2013, 24, 678-683.	1.8	17
36	Highly photosensitive colorimetric immunoassay for tumor marker detection based on Cu 2+ doped Ag-Agl nanocomposite. Talanta, 2017, 167, 111-117.	2.9	17

BING ZHANG

#	Article	IF	CITATIONS
37	Dye sensitized photoelectrochemical immunosensor for the tumor marker CEA by using a flower-like 3D architecture prepared from graphene oxide and MoS2. Mikrochimica Acta, 2018, 185, 310.	2.5	17
38	MoS2@C nanosphere as near infrared / pH dual response platform for chemical photothermal combination treatment. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111054.	2.5	16
39	Cadmium ion-doped magnetic poly(styrene-acrylic acid) nanospheres for sensitive electrochemical immunoassay. Biosensors and Bioelectronics, 2012, 35, 461-465.	5.3	15
40	Metal sulfide-functionalized DNA concatamer for ultrasensitive electronic monitoring of ATP using a programmable capillary-based aptasensor. Biosensors and Bioelectronics, 2014, 53, 390-398.	5.3	15
41	Displacement-type amperometric immunosensing platform for sensitive determination of tumour markers. Biosensors and Bioelectronics, 2016, 82, 112-118.	5.3	15
42	Cysteine-assisted photoelectrochemical immunoassay for the carcinoembryonic antigen by using an ITO electrode modified with C3N4-BiOCl semiconductor and CuO nanoparticles as antibody labels. Mikrochimica Acta, 2019, 186, 633.	2.5	15
43	Visible light enabled colorimetric tumor marker detection using ternary GO-C3N4-AgBr heterojunction nanophotocatalyst. Sensors and Actuators B: Chemical, 2018, 268, 376-382.	4.0	14
44	Bio-dye sensitized detection of Hg2+ based GO-ZnO-CdS nanohybrids. Sensors and Actuators B: Chemical, 2017, 253, 495-501.	4.0	13
45	TiO2/SnO -Au nanocomposite catalyzed photochromic reaction for colorimetric immunoassay of tumor marker. Journal of Pharmaceutical and Biomedical Analysis, 2019, 169, 75-81.	1.4	13
46	Polyaniline@Au organic-inorganic nanohybrids with thermometer readout for photothermal immunoassay of tumor marker. Mikrochimica Acta, 2021, 188, 63.	2.5	13
47	Biofunctionalized dendritic polyaniline nanofibers for sensitive electrochemical immunoassay of biomarkers. Analyst, The, 2012, 137, 1656.	1.7	12
48	Digital multimeter-based immunosensing strategy for sensitive monitoring of biomarker by coupling an external capacitor with an enzymatic catalysis. Biosensors and Bioelectronics, 2014, 55, 255-258.	5.3	12
49	Amplified photoelectrochemical immunoassay for the tumor marker carbohydrate antigen 724 based on dye sensitization of the semiconductor composite C3N4-MoS2. Mikrochimica Acta, 2018, 185, 530.	2.5	9
50	N-TiO2/g-C3N4/Up-conversion phosphor composites for the full-spectrum light-responsive deNO x photocatalysis. Journal of Materials Science, 2018, 53, 7266-7278.	1.7	8
51	Resonance Rayleigh scattering detection of the epidermal growth factor receptor based on an aptamer-functionalized gold-nanoparticle probe. Analytical Methods, 2018, 10, 2910-2916.	1.3	8
52	Colorimetric and photothermal dual-mode immunoassay for tumour marker detection based on a Ag2CO3@Ag nanocomposite. Process Biochemistry, 2019, 87, 66-72.	1.8	8
53	Magnetic responsive Thermomyces lanuginosus lipase for biodiesel synthesis. Materials Today Communications, 2020, 24, 101197.	0.9	7
54	Resonance Rayleigh scattering assay for EGFR using antibody immobilized gold nanoparticles. Luminescence, 2018, 33, 1326-1332.	1.5	5

BING ZHANG

#	Article	IF	CITATIONS
55	Photochromic immunoassay for tumor marker detection based on ZnO/AgI nanophotocatalyst. Mikrochimica Acta, 2022, 189, 77.	2.5	4
56	Organic–inorganic hybrid photothermal nanomaterials for combined photothermal and chemotherapy therapy of tumors under the dual biological window. Journal of Materials Science, 2021, 56, 18219-18232.	1.7	3
57	Photocatalytic degradation of ofloxacin by ZnO/CsxWO3 composite synthesized by two-step method: A kinetic study. Functional Materials Letters, 2019, 12, 1950068.	0.7	2
58	The photothermal and adsorption properties of different surfactant-modified caesium tungsten bronze. Materials Technology, 2020, , 1-11.	1.5	2
59	Fabrication of N and F Modified La-TiO ₂ Nanoparticles and Their Enhanced Photocatalytic Response to Visible Light. Journal of Nanoscience and Nanotechnology, 2020, 20, 779-788.	0.9	2
60	A Colorimetric Immunoassay Based on g-C3N4@Fe3O4 Nanocomposite for Detection of Carcinoembryonic Antigen. Journal of Analytical Methods in Chemistry, 2022, 2022, 1-7.	0.7	2
61	Molybdenum blue mediated photothermal immunoassay for CEA detection based on Ag4P2O7@Ag nanocomposites. Talanta, 2022, 249, 123665.	2.9	2
62	PEG Modificated Bubbleâ€Like Carbon Sphericalâ€W 18 O 49 Using for In Vitro Chemotherapyâ€Photothermal	1.2	1

PEG Modificated Bubbleâ€Like Carbon Sphericalâ€W 18 O 49 Using for In Vitro Chemotherapyâ€Photothermal Synergistic Reverse Cancer Cells. Particle and Particle Systems Characterization, 2021, 38, 2100062. 62