
Jiefu Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9270959/publications.pdf Version: 2024-02-01

LIEFU VIN

#	Article	IF	CITATIONS
1	Reversible epitaxial electrodeposition of metals in battery anodes. Science, 2019, 366, 645-648.	6.0	1,097
2	Generation and photocatalytic activities of Bi@Bi2O3 microspheres. Nano Research, 2011, 4, 470-482.	5.8	204
3	Cu2O@reduced graphene oxide composite for removal of contaminants from water and supercapacitors. Journal of Materials Chemistry, 2011, 21, 10645.	6.7	200
4	Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal–substrate bonding. Nature Energy, 2021, 6, 398-406.	19.8	169
5	Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Science Advances, 2020, 6, eabb1122.	4.7	143
6	Improved performances of β-Ni(OH)2@reduced-graphene-oxide in Ni-MH and Li-ion batteries. Chemical Communications, 2011, 47, 3159.	2.2	126
7	Proton Intercalation/Deâ€Intercalation Dynamics in Vanadium Oxides for Aqueous Aluminum Electrochemical Cells. Angewandte Chemie - International Edition, 2020, 59, 3048-3052.	7.2	122
8	Self-assembly into magnetic Co ₃ O ₄ complex nanostructures as peroxidase. Journal of Materials Chemistry, 2012, 22, 527-534.	6.7	116
9	SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 23963.	6.7	97
10	Mg(OH) ₂ Complex Nanostructures with Superhydrophobicity and Flame Retardant Effects. Journal of Physical Chemistry C, 2010, 114, 17362-17368.	1.5	87
11	Synthesis and separation of dyesvia Ni@reduced graphene oxide nanostructures. Journal of Materials Chemistry, 2012, 22, 1876-1883.	6.7	83
12	Magnesium-ion battery-relevant electrochemistry of MgMn ₂ O ₄ : crystallite size effects and the notable role of electrolyte water content. Chemical Communications, 2017, 53, 3665-3668.	2.2	79
13	Synthesis and Applications of Î ³ -Tungsten Oxide Hierarchical Nanostructures. Crystal Growth and Design, 2013, 13, 759-769.	1.4	75
14	On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity. Nature Communications, 2021, 12, 6034.	5.8	70
15	Textured Electrodes: Manipulating Builtâ€In Crystallographic Heterogeneity of Metal Electrodes via Severe Plastic Deformation. Advanced Materials, 2022, 34, e2106867.	11.1	62
16	Synthesis and Photocatalytic Activity of Single-Crystalline Hollow rh-In ₂ O ₃ Nanocrystals. Inorganic Chemistry, 2012, 51, 6529-6536.	1.9	59
17	Stabilizing Zinc Electrodeposition in a Battery Anode by Controlling Crystal Growth. Small, 2021, 17, e2101798.	5.2	58
18	Ag2Se complex nanostructures with photocatalytic activity and superhydrophobicity. Nano Research, 2010, 3, 863-873.	5.8	55

Jiefu Yin

#	Article	IF	CITATIONS
19	On the Reversibility and Fragility of Sodium Metal Electrodes. Advanced Energy Materials, 2019, 9, 1901651.	10.2	48
20	Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes. Nature Communications, 2022, 13, 2283.	5.8	47
21	MgCO ₃ ·3H ₂ O and MgO complex nanostructures: controllable biomimetic fabrication and physical chemical properties. Physical Chemistry Chemical Physics, 2011, 13, 5047-5052.	1.3	45
22	Biomineralization Strategy to α-Mn ₂ O ₃ Hierarchical Nanostructures. Journal of Physical Chemistry C, 2012, 116, 21109-21115.	1.5	36
23	Glucosan controlled biomineralization of SrCO3 complex nanostructures with superhydrophobicity and adsorption properties. Journal of Materials Chemistry, 2011, 21, 8734.	6.7	32
24	Communication—Sol-Gel Synthesized Magnesium Vanadium Oxide, Mg _x V ₂ O ₅ · nH ₂ O: The Role of Structural Mg ²⁺ on Battery Performance. Journal of the Electrochemical Society, 2016, 163, A1941-A1943.	1.3	28
25	The early-stage growth and reversibility of Li electrodeposition in Br-rich electrolytes. Proceedings of the United States of America, 2021, 118, .	3.3	26
26	Achieving Uniform Lithium Electrodeposition in Cross-Linked Poly(ethylene oxide) Networks: "Soft― Polymers Prevent Metal Dendrite Proliferation. Macromolecules, 2020, 53, 5445-5454.	2.2	22
27	Ionic liquid hybrids: Progress toward non-corrosive electrolytes with high-voltage oxidation stability for magnesium-ion based batteries. Electrochimica Acta, 2016, 219, 267-276.	2.6	14
28	Understanding the Effect of Preparative Approaches in the Formation of "Flower-like― Li4Ti5O12—Multiwalled Carbon Nanotube Composite Motifs with Performance as High-Rate Anode Materials for Li-Ion Battery Applications. Journal of the Electrochemical Society, 2017, 164, A524-A534.	1.3	14
29	Proton Intercalation/Deâ€Intercalation Dynamics in Vanadium Oxides for Aqueous Aluminum Electrochemical Cells. Angewandte Chemie, 2020, 132, 3072-3076.	1.6	13
30	Synthetic control of manganese birnessite: Impact of crystallite size on Li, Na, and Mg based electrochemistry. Inorganica Chimica Acta, 2016, 453, 230-237.	1.2	11
31	Reversible Electrochemical Lithium-Ion Insertion into the Rhenium Cluster Chalcogenide–Halide Re ₆ Se ₈ Cl ₂ . Inorganic Chemistry, 2018, 57, 4812-4815.	1.9	8
32	Synthesis and Characterization of 2 × 4 Tunnel Structured Manganese Dioxides as Cathodes in Rechargeable Li, Na, and Mg Batteries. Journal of the Electrochemical Society, 2019, 166, A670-A678.	1.3	8
33	Rate Dependent Multi-Mechanism Discharge of Ag _{0.50} VOPO ₄ ·1.8H ₂ O: Insights from In Situ Energy Dispersive X-ray Diffraction. Journal of the Electrochemical Society, 2017, 164, A6007-A6016.	1.3	4
34	Electrochemically Induced Phase Evolution of Lithium Vanadium Oxide: Complementary Insights Gained via Ex-Situ, In-Situ, and Operando Experiments and Density Functional Theory. MRS Advances, 2018, 3, 1255-1260.	0.5	3