List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9270877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell wall modifications by α-XYLOSIDASE1 are required for control of seed and fruit size in Arabidopsis. Journal of Experimental Botany, 2022, 73, 1499-1515.	4.8	13
2	MiRNA expression analysis during somatic embryogenesis in Coffea canephora. Plant Cell, Tissue and Organ Culture, 2022, 150, 177-190.	2.3	4
3	Gynoecium and fruit development in <i>Arabidopsis</i> . Development (Cambridge), 2022, 149, .	2.5	17
4	Identification of genuine and novel miRNAs in Amaranthus hypochondriacus from high-throughput sequencing data. Genomics, 2021, 113, 88-103.	2.9	2
5	Arabidopsis cysteine-rich receptor-like protein kinase <i>CRK33</i> affects stomatal density and drought tolerance. Plant Signaling and Behavior, 2021, 16, 1905335.	2.4	11
6	The Relationship between AGAMOUS and Cytokinin Signaling in the Establishment of Carpeloid Features. Plants, 2021, 10, 827.	3.5	9
7	Osmotic stress-induced somatic embryo maturation of coffee Coffea arabica L., shoot and root apical meristems development and robustness. Scientific Reports, 2021, 11, 9661.	3.3	12
8	Effects of the Developmental Regulator BOLITA on the Plant Metabolome. Genes, 2021, 12, 995.	2.4	3
9	Building a Flower: The Influence of Cell Wall Composition on Flower Development and Reproduction. Genes, 2021, 12, 978.	2.4	5
10	Genetic Interaction of SEEDSTICK, GORDITA and AUXIN RESPONSE FACTOR 2 during Seed Development. Genes, 2021, 12, 1189.	2.4	8
11	ANT and AIL6: masters of the master regulators during flower development. Journal of Experimental Botany, 2021, 72, 5263-5266.	4.8	5
12	Vision, challenges and opportunities for a Plant Cell Atlas. ELife, 2021, 10, .	6.0	31
13	Transcriptome analysis of gynoecium morphogenesis uncovers the chronology of gene regulatory network activity. Plant Physiology, 2021, 185, 1076-1090.	4.8	11
14	Developmental Signals in the 21st Century; New Tools and Advances in Plant Signaling. Genes, 2021, 12, 1708.	2.4	0
15	Editorial: Plant Development: From Cells to Systems Biology. Frontiers in Plant Science, 2021, 12, 810071.	3.6	0
16	Redundant and Non-redundant Functions of the AHK Cytokinin Receptors During Gynoecium Development. Frontiers in Plant Science, 2020, 11, 568277.	3.6	8
17	tasiR-ARFs Production and Target Regulation during In Vitro Maize Plant Regeneration. Plants, 2020, 9, 849.	3.5	4
18	Plant Biology: Gynoecium Development with Style. Current Biology, 2020, 30, R1420-R1422.	3.9	0

#	Article	IF	CITATIONS
19	Agrobacterium rhizogenes-mediated transformation of grain (Amaranthus hypochondriacus) and leafy (A. hybridus) amaranths. Plant Cell Reports, 2020, 39, 1143-1160.	5.6	16
20	SEEDSTICK Controls Arabidopsis Fruit Size by Regulating Cytokinin Levels and FRUITFULL. Cell Reports, 2020, 30, 2846-2857.e3.	6.4	42
21	Gynoecium size and ovule number are interconnected traits that impact seed yield. Journal of Experimental Botany, 2020, 71, 2479-2489.	4.8	51
22	New roles of NO TRANSMITTING TRACT and SEEDSTICK during medial domain development in Arabidopsis fruits. Development (Cambridge), 2019, 146, .	2.5	22
23	REM34 and REM35 Control Female and Male Gametophyte Development in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 1351.	3.6	19
24	Control of stem cell activity in the carpel margin meristem (CMM) in Arabidopsis. Plant Reproduction, 2019, 32, 123-136.	2.2	26
25	Bioinformatic Analysis of Small RNA Sequencing Libraries. Methods in Molecular Biology, 2019, 1932, 51-63.	0.9	1
26	Isolation and Detection Methods of Plant miRNAs. Methods in Molecular Biology, 2019, 1932, 109-120.	0.9	0
27	Detection of miRNAs by Tissue Printing and Dot Blot Hybridization. Methods in Molecular Biology, 2019, 1932, 151-157.	0.9	Ο
28	A Simple Protocol for Imaging Floral Tissues of Arabidopsis with Confocal Microscopy. Methods in Molecular Biology, 2019, 1932, 187-195.	0.9	1
29	Gynoecium development: networks in Arabidopsis and beyond. Journal of Experimental Botany, 2019, 70, 1447-1460.	4.8	42
30	Stimulation of the germination and growth of different plant species using an electric field treatment with IrO ₂ â€Ta ₂ O ₅ Ti electrodes. Journal of Chemical Technology and Biotechnology, 2018, 93, 1488-1494.	3.2	14
31	Entering the Next Dimension: Plant Genomes in 3D. Trends in Plant Science, 2018, 23, 598-612.	8.8	44
32	In vivo monitoring of nicotine biosynthesis in tobacco leaves by low-temperature plasma mass spectrometry. Talanta, 2018, 185, 324-327.	5.5	18
33	Non-destructive Plant Morphometric and Color Analyses Using an Optoelectronic 3D Color Microscope. Frontiers in Plant Science, 2018, 9, 1409.	3.6	3
34	Exploring Cell Wall Composition and Modifications During the Development of the Gynoecium Medial Domain in Arabidopsis. Frontiers in Plant Science, 2018, 9, 454.	3.6	31
35	Conserved and novel responses to cytokinin treatments during flower and fruit development in Brassica napus and Arabidopsis thaliana. Scientific Reports, 2018, 8, 6836.	3.3	35
36	Conservation, Divergence, and Abundance of MiRNAs and Their Effect in Plants. RNA Technologies, 2017, , 1-22.	0.3	4

#	Article	IF	CITATIONS
37	Synergistic relationship between auxin and cytokinin in the ovary and the participation of the transcription factor SPATULA. Plant Signaling and Behavior, 2017, 12, e1376158.	2.4	21
38	Effect of Constitutive miR164 Expression on Plant Morphology and Fruit Development in Arabidopsis and Tomato. Agronomy, 2017, 7, 48.	3.0	23
39	The AP2/ERF Transcription Factor DRNL Modulates Gynoecium Development and Affects Its Response to Cytokinin. Frontiers in Plant Science, 2017, 8, 1841.	3.6	37
40	The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genetics, 2017, 13, e1006726.	3.5	98
41	Selection of Reference Genes for Quantitative Real-Time RT-PCR Studies in Tomato Fruit of the Genotype MT-Rg1. Frontiers in Plant Science, 2016, 7, 1386.	3.6	32
42	Auxin Is Required for Valve Margin Patterning in Arabidopsis After All. Molecular Plant, 2016, 9, 768-770.	8.3	3
43	Regulatory network analysis reveals novel regulators of seed desiccation tolerance in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5232-41.	7.1	106
44	Enhanced Germination and Growth of <i>Arabidopsis thaliana</i> Using IrO ₂ -Ta ₂ O ₅ Ti as a Dimensional Stable Anode in the Electro-Culture Technique. , 2016, , .		1
45	Altered expression of the bZIP transcription factor DRINK ME affects growth and reproductive development in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 437-451.	5.7	40
46	Laser-Assisted Microdissection to Study Global Transcriptional Changes During Plant Embryogenesis. , 2016, , 495-506.		3
47	Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology, 2016, 29, 104-114.	7.1	87
48	Arabidopsis thaliana gonidialess A/Zuotin related factors (GlsA/ZRF) are essential for maintenance of meristem integrity. Plant Molecular Biology, 2016, 91, 37-51.	3.9	14
49	Imaging early stages of the female reproductive structure of arabidopsis by confocal laser scanning microscopy. Developmental Dynamics, 2015, 244, 1286-1290.	1.8	20
50	Metabolic fingerprinting of Arabidopsis thaliana accessions. Frontiers in Plant Science, 2015, 6, 365.	3.6	24
51	The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family. Frontiers in Plant Science, 2015, 6, 341.	3.6	51
52	Towards a comprehensive and dynamic gynoecium gene regulatory network. Current Plant Biology, 2015, 3-4, 3-12.	4.7	34
53	miRNA expression during prickly pear cactus fruit development. Planta, 2015, 241, 435-448.	3.2	23
54	XAANTAL2 (AGL14) Is an Important Component of the Complex Gene Regulatory Network that Underlies Arabidopsis Shoot Apical Meristem Transitions. Molecular Plant, 2015, 8, 796-813.	8.3	68

#	Article	IF	CITATIONS
55	An efficient method for miRNA detection and localization in crop plants. Frontiers in Plant Science, 2015, 6, 99.	3.6	8
56	Cytokinin treatments affect the apical-basal patterning of the Arabidopsis gynoecium and resemble the effects of polar auxin transport inhibition. Frontiers in Plant Science, 2014, 5, 191.	3.6	51
57	The <scp>NTT</scp> transcription factor promotes replum development in <scp>A</scp> rabidopsis fruits. Plant Journal, 2014, 80, 69-81.	5.7	61
58	Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network. BMC Systems Biology, 2014, 8, 9.	3.0	28
59	Unraveling the signal scenario of fruit set. Planta, 2014, 239, 1147-1158.	3.2	38
60	Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nature Communications, 2014, 5, 3722.	12.8	224
61	Protein interactions guiding carpel and fruit development in <i>Arabidopsis</i> . Plant Biosystems, 2014, 148, 169-175.	1.6	7
62	ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks. BMC Plant Biology, 2014, 14, 97.	3.6	35
63	An efficient flat-surface collar-free grafting method for Arabidopsis thaliana seedlings. Plant Methods, 2013, 9, 14.	4.3	71
64	Growth Promotion and Flowering Induction in Mango (Mangifera indica L. cv "Ataulfoâ€) Trees by Burkholderia and Rhizobium Inoculation: Morphometric, Biochemical, and Molecular Events. Journal of Plant Growth Regulation, 2013, 32, 615-627.	5.1	27
65	The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. EMBO Journal, 2013, 32, 2884-2895.	7.8	87
66	Potential use of Trichoderma asperellum (Samuels, Liechfeldt et Nirenberg) T8a as a biological control agent against anthracnose in mango (Mangifera indica L.). Biological Control, 2013, 64, 37-44.	3.0	48
67	Inside the gynoecium: at the carpel margin. Trends in Plant Science, 2013, 18, 644-655.	8.8	124
68	Cytochrome P450 <i>CYP78A9</i> Is Involved in Arabidopsis Reproductive Development Â. Plant Physiology, 2013, 162, 779-799.	4.8	82
69	Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. Journal of Experimental Botany, 2013, 64, 5673-5685.	4.8	124
70	Toward understanding the role ofCYP78A9duringArabidopsisreproduction. Plant Signaling and Behavior, 2013, 8, e25160.	2.4	3
71	The class II HD-ZIP <i>JAIBA</i> gene is involved in meristematic activity and important for gynoecium and fruit development in Arabidopsis. Plant Signaling and Behavior, 2012, 7, 1501-1503.	2.4	5
72	Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically Â. Plant Physiology, 2012, 159, 1511-1523.	4.8	279

#	Article	IF	CITATIONS
73	Characterization of SOC1's Central Role in Flowering by the Identification of Its Upstream and Downstream Regulators Â. Plant Physiology, 2012, 160, 433-449.	4.8	169
74	The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning. Plant Journal, 2012, 72, 222-234.	5.7	104
75	Hormones talking. Plant Signaling and Behavior, 2012, 7, 1698-1701.	2.4	21
76	JAIBA, a classâ€I HDâ€ZIP transcription factor involved in the regulation of meristematic activity, and important for correct gynoecium and fruit development in Arabidopsis. Plant Journal, 2012, 71, 314-326.	5.7	65
77	Genómica Funcional de Plantas: Estudio del Desarrollo de Flores y Frutos. Acta Universitaria, 2012, 19, 21-29.	0.2	0
78	Conservation and Evolution in and among SRF- and MEF2-Type MADS Domains and Their Binding Sites. Molecular Biology and Evolution, 2011, 28, 501-511.	8.9	26
79	A simple and efficient method for isolating small RNAs from different plant species. Plant Methods, 2011, 7, 4.	4.3	31
80	Yeast Protein–Protein Interaction Assays and Screens. Methods in Molecular Biology, 2011, 754, 145-165.	0.9	56
81	Hot and Retro Meet Arabidopsis. Frontiers in Plant Science, 2011, 2, 22.	3.6	Ο
82	The MADS Symphonies of Transcriptional Regulation. Frontiers in Plant Science, 2011, 2, 26.	3.6	5
83	Vertebrate Paralogous MEF2 Genes: Origin, Conservation, and Evolution. PLoS ONE, 2011, 6, e17334.	2.5	30
84	Protein Tagging for Chromatin Immunoprecipitation from Arabidopsis. Methods in Molecular Biology, 2011, 678, 199-210.	0.9	4
85	Flower Development. The Arabidopsis Book, 2010, 8, e0127.	0.5	227
86	In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biology, 2009, 9, 5.	3.6	73
87	Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biology, 2009, 9, 9.	3.6	55
88	SEPALLATA3: the 'glue' for MADS box transcription factor complex formation. Genome Biology, 2009, 10, R24.	9.6	250
89	MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biology, 2007, 8, R249.	9.6	95
90	Tagging of MADS domain proteins for chromatin immunoprecipitation. BMC Plant Biology, 2007, 7, 47.	3.6	40

#	Article	IF	CITATIONS
91	trans meets cis in MADS science. Trends in Plant Science, 2006, 11, 224-231.	8.8	173
92	A BsisterMADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant Journal, 2006, 47, 934-946.	5.7	117
93	BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways. Plant Molecular Biology, 2006, 62, 825-843.	3.9	85
94	Characterization of oil palm MADS box genes in relation to the mantled flower abnormality. Plant Cell, Tissue and Organ Culture, 2006, 85, 331-344.	2.3	34
95	Characterization of the Vernalization Response in Lolium perenne by a cDNA Microarray Approach. Plant and Cell Physiology, 2006, 47, 481-492.	3.1	26
96	Comprehensive Interaction Map of the Arabidopsis MADS Box Transcription Factors. Plant Cell, 2005, 17, 1424-1433.	6.6	528
97	Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development (Cambridge), 2005, 132, 429-438.	2.5	335
98	Transcript profiling of transcription factor genes during silique development in Arabidopsis. Plant Molecular Biology, 2004, 56, 351-366.	3.9	88
99	Molecular and Phylogenetic Analyses of the Complete MADS-Box Transcription Factor Family in Arabidopsis. Plant Cell, 2003, 15, 1538-1551.	6.6	758
100	Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell and Environment, 2001, 24, 217-226.	5.7	313
101	Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell and Environment, 2001, 24, 217-226.	5.7	33