
Ying Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9270795/publications.pdf Version: 2024-02-01

VINC 7HANC

#	Article	IF	CITATIONS
1	V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature, 2006, 440, 215-219.	27.8	348
2	V3 Spinal Neurons Establish a Robust and Balanced Locomotor Rhythm during Walking. Neuron, 2008, 60, 84-96.	8.1	293
3	Activity-Independent Homeostasis in Rhythmically Active Neurons. Neuron, 2003, 37, 109-120.	8.1	255
4	V1 and V2b Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed Locomotion. Neuron, 2014, 82, 138-150.	8.1	172
5	Activity-Independent Coregulation of IA and Ih in Rhythmically Active Neurons. Journal of Neurophysiology, 2005, 94, 3601-3617.	1.8	127
6	Critical role of spectrin in hearing development and deafness. Science Advances, 2019, 5, eaav7803.	10.3	113
7	Functional Subpopulations of V3 Interneurons in the Mature Mouse Spinal Cord. Journal of Neuroscience, 2013, 33, 18553-18565.	3.6	102
8	Delineating the Diversity of Spinal Interneurons in Locomotor Circuits. Journal of Neuroscience, 2017, 37, 10835-10841.	3.6	92
9	Sub-populations of Spinal V3 Interneurons Form Focal Modules of Layered Pre-motor Microcircuits. Cell Reports, 2018, 25, 146-156.e3.	6.4	72
10	Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy. Nature Communications, 2015, 6, 8506.	12.8	47
11	Spinal V3 Interneurons and Left–Right Coordination in Mammalian Locomotion. Frontiers in Cellular Neuroscience, 2019, 13, 516.	3.7	47
12	Motoneurons Derived from Induced Pluripotent Stem Cells Develop Mature Phenotypes Typical of Endogenous Spinal Motoneurons. Journal of Neuroscience, 2015, 35, 1291-1306.	3.6	44
13	<i><scp>S</scp>im1</i> is required for the migration and axonal projections of V3 interneurons in the developing mouse spinal cord. Developmental Neurobiology, 2015, 75, 1003-1017.	3.0	43
14	Locomotor-related V3 interneurons initiate and coordinate muscles spasms after spinal cord injury. Journal of Neurophysiology, 2019, 121, 1352-1367.	1.8	41
15	Examination of Daytime Sleepiness and Cognitive Performance Testing in Patients with Primary Insomnia. PLoS ONE, 2014, 9, e100965.	2.5	35
16	V3 interneuron subpopulations in the mouse spinal cord undergo distinctive postnatal maturation processes. Neuroscience, 2015, 295, 221-228.	2.3	34
17	A Stem-Cell Based Bioassay to Critically Assess the Pathology of Dysfunctional Neuromuscular Junctions. PLoS ONE, 2014, 9, e91643.	2.5	29
18	The Temporal Neurogenesis Patterning of Spinal p3–V3 Interneurons into Divergent Subpopulation Assemblies. Journal of Neuroscience, 2020, 40, 1440-1452.	3.6	27

YING ZHANG

#	Article	IF	CITATIONS
19	The functional diversity of spinal interneurons and locomotor control. Current Opinion in Physiology, 2019, 8, 99-108.	1.8	18
20	Organized cannabinoid receptor distribution in neurons revealed by super-resolution fluorescence imaging. Nature Communications, 2020, 11, 5699.	12.8	18
21	The role of V3 neurons in speed-dependent interlimb coordination during locomotion in mice. ELife, 2022, 11, .	6.0	18
22	KChIP1 and Frequenin Modify shal-Evoked Potassium Currents in Pyloric Neurons in the Lobster Stomatogastric Ganglion. Journal of Neurophysiology, 2003, 89, 1902-1909.	1.8	13
23	A dynamic role for dopamine receptors in the control of mammalian spinal networks. Scientific Reports, 2020, 10, 16429.	3.3	12
24	Loss of Dcc in the spinal cord is sufficient to cause a deficit in lateralized motor control and the switch to a hopping gait. Developmental Dynamics, 2018, 247, 620-629.	1.8	9