Wenjie Mai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9270653/publications.pdf

Version: 2024-02-01

219 18,745 66
papers citations h-inde

12933 66 131 h-index g-index

226 226 all docs citations

226 times ranked 19464 citing authors

#	Article	IF	CITATIONS
1	Low-Cost High-Performance Solid-State Asymmetric Supercapacitors Based on MnO ₂ Nanowires and Fe ₂ O ₃ Nanotubes. Nano Letters, 2014, 14, 731-736.	4.5	1,035
2	Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices. Science, 2005, 309, 1700-1704.	6.0	835
3	Hydrogenated ZnO Core–Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems. ACS Nano, 2013, 7, 2617-2626.	7.3	781
4	Flexible Piezotronic Strain Sensor. Nano Letters, 2008, 8, 3035-3040.	4.5	742
5	Flexible solid-state electrochemical supercapacitors. Nano Energy, 2014, 8, 274-290.	8.2	734
6	Fiber-Based All-Solid-State Flexible Supercapacitors for Self-Powered Systems. ACS Nano, 2012, 6, 9200-9206.	7.3	596
7	Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendriteâ€Free Zn Ion Batteries Achieved by a Lowâ€Cost Glucose Additive. Angewandte Chemie - International Edition, 2021, 60, 18247-18255.	7.2	529
8	Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Applied Physics Letters, 2009, 94, 191103.	1.5	515
9	Electrochromic energy storage devices. Materials Today, 2016, 19, 394-402.	8.3	415
10	Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires. Chemical Communications, 2016, 52, 6296-6299.	2.2	383
11	All Metal Nitrides Solidâ€State Asymmetric Supercapacitors. Advanced Materials, 2015, 27, 4566-4571.	11.1	371
12	Ultrahighâ€Performance Pseudocapacitor Electrodes Based on Transition Metal Phosphide Nanosheets Array via Phosphorization: A General and Effective Approach. Advanced Functional Materials, 2015, 25, 7530-7538.	7.8	359
13	Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy and Environmental Science, 2017, 10, 772-779.	15.6	315
14	Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nature Communications, 2019, 10, 3687.	5.8	300
15	Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Wires. Nano Letters, 2008, 8, 3973-3977.	4.5	279
16	Patterned Growth of Vertically Aligned ZnO Nanowire Arrays on Inorganic Substrates at Low Temperature without Catalyst. Journal of the American Chemical Society, 2008, 130, 14958-14959.	6.6	270
17	An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra. Journal of Materials Chemistry A, 2019, 7, 946-957.	5.2	242
18	The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon, 2012, 50, 3407-3415.	5.4	236

#	Article	IF	CITATIONS
19	Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage. ACS Nano, 2016, 10, 9201-9207.	7.3	213
20	Largeâ€Scale Fabrication of Pseudocapacitive Glass Windows that Combine Electrochromism and Energy Storage. Angewandte Chemie - International Edition, 2014, 53, 11935-11939.	7.2	207
21	BiOl–BiVO 4 photoanodes with significantly improved solar water splitting capability: p–n junction to expand solar adsorption range and facilitate charge carrier dynamics. Nano Energy, 2015, 18, 222-231.	8.2	199
22	A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Research, 2016, 9, 2823-2851.	5.8	198
23	Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy, 2018, 53, 415-424.	8.2	194
24	NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries. Nano Energy, 2020, 68, 104293.	8.2	193
25	Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nature Communications, 2022, 13, 2191.	5.8	179
26	All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy, 2016, 26, 446-455.	8.2	167
27	Ultrafastâ€Charging Supercapacitors Based on Cornâ€Like Titanium Nitride Nanostructures. Advanced Science, 2016, 3, 1500299.	5. 6	163
28	Design of pomegranate-like clusters with NiS ₂ nanoparticles anchored on nitrogen-doped porous carbon for improved sodium ion storage performance. Journal of Materials Chemistry A, 2018, 6, 6595-6605.	5.2	159
29	Rational design of MoS2-reduced graphene oxide sponges as free-standing anodes for sodium-ion batteries. Chemical Engineering Journal, 2018, 332, 260-266.	6.6	159
30	WO ₃ nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis. Journal of Materials Chemistry A, 2016, 4, 7266-7273.	5.2	153
31	A Robust Solid Electrolyte Interphase Layer Augments the Ion Storage Capacity of Bimetallicâ€Sulfideâ€Containing Potassiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 14740-14747.	7.2	153
32	Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. Journal of Power Sources, 2015, 287, 68-74.	4.0	150
33	Synergistic Antibacterial Brilliant Blue/Reduced Graphene Oxide/Quaternary Phosphonium Salt Composite with Excellent Water Solubility and Specific Targeting Capability. Langmuir, 2011, 27, 7828-7835.	1.6	145
34	Rational design of metal organic framework-derived FeS ₂ hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale, 2018, 10, 17092-17098.	2.8	139
35	In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage. Chemical Engineering Journal, 2019, 378, 122108.	6.6	136
36	Novel 3D Nanoporous Zn–Cu Alloy as Longâ€Life Anode toward Highâ€Voltage Double Electrolyte Aqueous Zincâ€lon Batteries. Small, 2020, 16, e2001323.	5.2	136

#	Article	IF	CITATIONS
37	Ceria and ceria-based nanostructured materials for photoenergy applications. Nano Energy, 2017, 34, 313-337.	8.2	134
38	Electrochromic Asymmetric Supercapacitor Windows Enable Direct Determination of Energy Status by the Naked Eye. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34085-34092.	4.0	134
39	Flexible supercapacitors based on carbon nanotube/MnO ₂ nanotube hybrid porous films for wearable electronic devices. Journal of Materials Chemistry A, 2014, 2, 17561-17567.	5.2	132
40	Aspect Ratio Dependence of the Elastic Properties of ZnO Nanobelts. Nano Letters, 2007, 7, 1314-1317.	4.5	130
41	Superelasticity and Nanofracture Mechanics of ZnO Nanohelices. Nano Letters, 2006, 6, 2536-2543.	4.5	129
42	Significantly Enhanced Photocatalytic Activities and Charge Separation Mechanism of Pd-Decorated ZnO–Graphene Oxide Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3623-3629.	4.0	129
43	In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage. Light: Science and Applications, 2018, 7, 34.	7.7	129
44	Worm-like amorphous MnO2nanowires grown on textiles for high-performance flexible supercapacitors. Journal of Materials Chemistry A, 2014, 2, 595-599.	5.2	120
45	Elastic Properties and Buckling of Silicon Nanowires. Advanced Materials, 2008, 20, 3919-3923.	11.1	119
46	Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications. Journal of Materials Chemistry A, 2015, 3, 20614-20618.	5.2	119
47	Achieving high-energy density and superior cyclic stability in flexible and lightweight pseudocapacitor through synergic effects of binder-free CoGa2O4 2D-hexagonal nanoplates. Nano Energy, 2020, 77, 105276.	8.2	118
48	Kâ€kon Storage Enhancement in Sb ₂ O ₃ /Reduced Graphene Oxide Using Etherâ€Based Electrolyte. Advanced Energy Materials, 2020, 10, 1903455.	10.2	113
49	Rational design of carbon shell endows TiN@C nanotube based fiber supercapacitors with significantly enhanced mechanical stability and electrochemical performance. Nano Energy, 2017, 31, 432-440.	8.2	112
50	Mesoporous manganese-selenide microflowers with enhanced electrochemical performance as a flexible symmetric 1.8â€√V supercapacitor. Chemical Engineering Journal, 2020, 382, 122814.	6.6	108
51	Freestanding CNT–WO ₃ hybrid electrodes for flexible asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 12076-12080.	5.2	101
52	Atomicâ€Layer Depositionâ€Assisted Doubleâ€Side Interfacial Engineering for Highâ€Performance Flexible and Stable CsPbBr ₃ Perovskite Photodetectors toward Visible Light Communication Applications. Small, 2019, 15, e1902135.	5.2	97
53	Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendriteâ€Free Zn Ion Batteries Achieved by a Lowâ€Cost Glucose Additive. Angewandte Chemie, 2021, 133, 18395-18403.	1.6	97
54	Quantitative Analysis of Charge Storage Process of Tungsten Oxide that Combines Pseudocapacitive and Electrochromic Properties. Journal of Physical Chemistry C, 2015, 119, 16483-16489.	1.5	93

#	Article	IF	CITATIONS
55	A Flexible Microsupercapacitor with Integral Photocatalytic Fuel Cell for Self-Charging. ACS Nano, 2019, 13, 8246-8255.	7.3	86
56	A review of hard carbon anode: Rational design and advanced characterization in potassium ion batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	85
57	Strongly Coupled NiCo ₂ O ₄ Nanocrystal/MXene Hybrid through In Situ Ni/Co–F Bonds for Efficient Wearable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 44639-44647.	4.0	82
58	Metal-coordination chemistry guiding preferred crystallographic orientation for reversible zinc anode. Energy Storage Materials, 2022, 49, 463-470.	9.5	81
59	Stretchable Ni@NiCoP textile for wearable energy storage clothes. Nano Energy, 2019, 55, 506-515.	8.2	79
60	Integration of Energy Harvesting and Electrochemical Storage Devices. Advanced Materials Technologies, 2017, 2, 1700182.	3.0	78
61	Construction of highly dispersed mesoporous bimetallic-sulfide nanoparticles locked in N-doped graphitic carbon nanosheets for high energy density hybrid flexible pseudocapacitors. Journal of Materials Chemistry A, 2019, 7, 17435-17445.	5.2	77
62	Atomic Layer Deposition of Amorphous TiO ₂ on Carbon Nanotube Networks and Their Superior Li and Na Ion Storage Properties. Advanced Materials Interfaces, 2016, 3, 1600375.	1.9	75
63	Interface Engineering To Boost Photoresponse Performance of Self-Powered, Broad-Bandwidth PEDOT:PSS/Si Heterojunction Photodetector. ACS Applied Materials & Interfaces, 2016, 8, 19158-19167.	4.0	72
64	Ultrahigh "Relative Energy Density―and Mass Loading of Carbon Cloth Anodes for K-lon Batteries. CCS Chemistry, 2021, 3, 791-799.	4.6	71
65	Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance. ACS Applied Materials & Splitting Performance. ACS Applied Materials & Splitting Performance.	4.0	69
66	A novel CoOOH/(Ti, C)-Fe2O3 nanorod photoanode for photoelectrochemical water splitting. Science China Materials, 2018, 61, 887-894.	3.5	69
67	Nitrogen doped amorphous carbon as metal free electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 876-885.	3.8	66
68	Achieving high rate and high energy density in an all-solid-state flexible asymmetric pseudocapacitor through the synergistic design of binder-free 3D ZnCo ₂ O ₄ nano polyhedra and 2D layered Ti ₃ C ₂ T _x -MXenes. Journal of Materials Chemistry A, 2019, 7, 24543-24556.	5.2	64
69	Visualized UV Photodetectors Based on Prussian Blue/TiO ₂ for Smart Irradiation Monitoring Application. Advanced Materials Technologies, 2018, 3, 1700288.	3.0	63
70	Self-Powered, High-Speed and Visibleâ€"Near Infrared Response of MoO _{3â€"<i>x</i>} /n-Si Heterojunction Photodetector with Enhanced Performance by Interfacial Engineering. ACS Applied Materials & Distriction (1) ACS Applied (2) Applied (2) AcS Applied (3) ACS (4) Applied (4) AcS (4) A	4.0	62
71	Quantifying the elastic deformation behavior of bridged nanobelts. Applied Physics Letters, 2006, 89, 073112.	1.5	60
72	Luminescent properties of orange-emitting long-lasting phosphorescence phosphor Ca2SnO4:Sm3+. Solid State Sciences, 2011, 13, 525-528.	1,5	60

#	Article	IF	CITATIONS
73	Reciprocal alternate deposition strategy using metal oxide/carbon nanotube for positive and negative electrodes of high-performance supercapacitors. Nano Energy, 2014, 10, 108-116.	8.2	60
74	Carboxymethyl Cellulose Binder Greatly Stabilizes Porous Hollow Carbon Submicrospheres in Capacitive K-lon Storage. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15581-15590.	4.0	58
75	Easy one-step hydrothermal synthesis of nitrogen-doped reduced graphene oxide/iron oxide hybrid as efficient supercapacitor material. Journal of Solid State Electrochemistry, 2015, 19, 135-144.	1.2	57
76	Sodium 1â€Naphthalenesulfonateâ€Functionalized Reduced Graphene Oxide Stabilizes Silver Nanoparticles with Lower Cytotoxicity and Longâ€Term Antibacterial Activity. Chemistry - an Asian Journal, 2012, 7, 1664-1670.	1.7	56
77	Interface charges redistribution enhanced monolithic etched copper foam-based Cu2O layer/TiO2 nanodots heterojunction with high hydrogen evolution electrocatalytic activity. Applied Catalysis B: Environmental, 2019, 243, 365-372.	10.8	56
78	Solar-powered overall water splitting system combing metal-organic frameworks derived bimetallic nanohybrids based electrocatalysts and one organic solar cell. Nano Energy, 2019, 56, 82-91.	8.2	55
79	High energy density hybrid supercapacitor based on 3D mesoporous cuboidal Mn2O3 and MOF-derived porous carbon polyhedrons. Electrochimica Acta, 2018, 282, 1-9.	2.6	54
80	High-Performance Na-Ion Storage of S-Doped Porous Carbon Derived from Conjugated Microporous Polymers. Nano-Micro Letters, 2019, 11, 60.	14.4	54
81	Reducing current fluctuation of Cs3Bi2Br9 perovskite photodetectors for diffuse reflection imaging with wide dynamic range. Science Bulletin, 2020, 65, 1371-1379.	4.3	53
82	High-concentration ether-based electrolyte boosts the electrochemical performance of SnS ₂ â€"reduced graphene oxide for K-ion batteries. Journal of Materials Chemistry A, 2019, 7, 19332-19341.	5.2	51
83	Growth of nickel (111) plane: The key role in nickel for further improving the electrochemical property of hexagonal nickel hydroxide-nickel & mp; reduced graphene oxide composite. Journal of Power Sources, 2014, 267, 356-365.	4.0	48
84	Strainâ€Insensitive Selfâ€Powered Tactile Sensor Arrays Based on Intrinsically Stretchable and Patternable Ultrathin Conformal Wrinkled Grapheneâ€Elastomer Composite. Advanced Functional Materials, 2022, 32, .	7.8	47
85	Theoretical calculation guided electrocatalysts design: Nitrogen saturated porous Mo2C nanostructures for hydrogen production. Applied Catalysis B: Environmental, 2019, 257, 117891.	10.8	46
86	Synthesis of mesoporous defective graphene-nanosheets in a space-confined self-assembled nanoreactor: Highly efficient capacitive energy storage. Electrochimica Acta, 2019, 305, 517-527.	2.6	45
87	High-performance flexible hybrid-supercapacitor enabled by pairing binder-free ultrathin Ni–Co–O nanosheets and metal-organic framework derived N-doped carbon nanosheets. Electrochimica Acta, 2020, 349, 136384.	2.6	45
88	Rational design of anatase TiO2 architecture with hierarchical nanotubes and hollow microspheres for high-performance dye-sensitized solar cells. Journal of Power Sources, 2016, 303, 57-64.	4.0	44
89	High-Performance Porous Molybdenum Oxynitride Based Fiber Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29699-29706.	4.0	44
90	Graphite Anode for Potassium Ion Batteries: Current Status and Perspective. Energy and Environmental Materials, 2022, 5, 458-469.	7.3	44

#	Article	IF	CITATIONS
91	Tunable electric and magnetic properties of CoxZn1â^'xS nanowires. Applied Physics Letters, 2008, 93, .	1.5	43
92	Role of graphene in great enhancement of photocatalytic activity of ZnO nanoparticle–graphene hybrids. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 47, 279-284.	1.3	43
93	Insight into the nitrogen-doped carbon as oxygen reduction reaction catalyst: The choice of carbon/nitrogen source and active sites. International Journal of Hydrogen Energy, 2016, 41, 8563-8575.	3.8	43
94	Nanowire as pico-gram balance at workplace atmosphere. Solid State Communications, 2006, 139, 222-226.	0.9	42
95	Novel blue-violet photoluminescence from sputtered ZnO thin films. Journal of Alloys and Compounds, 2011, 509, 5437-5440.	2.8	42
96	Allâ€Inorganic Perovskite Photodetectors with Ultrabroad Linear Dynamic Range for Weakâ€Light Imaging Applications. Advanced Optical Materials, 2020, 8, 2001436.	3.6	42
97	Vertically aligned ZnO nanowire arrays on GaN and SiC substrates. Chemical Physics Letters, 2008, 460, 253-256.	1.2	40
98	High performance MoO _{3â^'x} /Si heterojunction photodetectors with nanoporous pyramid Si arrays for visible light communication application. Journal of Materials Chemistry C, 2019, 7, 917-925.	2.7	40
99	Metal chelate induced <i>in situ</i> wrapping of Ni ₃ S ₂ nanoparticles into N, S-codoped carbon networks for highly efficient sodium storage. Inorganic Chemistry Frontiers, 2019, 6, 694-704.	3.0	40
100	Synthesis and characterization of Zn1â^'xMnxO nanowires. Applied Physics Letters, 2008, 92, .	1.5	39
101	Unveiling the electrochromic mechanism of Prussian Blue by electronic transition analysis. Nano Energy, 2020, 78, 105148.	8.2	39
102	Polycrystalline Few-Layer Graphene as a Durable Anticorrosion Film for Copper. Nano Letters, 2021, 21, 1161-1168.	4.5	39
103	All-inorganic lead-free NiOx/Cs3Bi2Br9 perovskite heterojunction photodetectors for ultraviolet multispectral imaging. Nano Research, 2022, 15, 1094-1101.	5.8	39
104	Understanding the improved performance of sulfurâ€doped interconnected carbon microspheres for Naâ€ion storage. , 2021, 3, 615-626.		38
105	Importance of Bi–O Bonds at the Cs ₂ AgBiBr ₆ Double-Perovskite/Substrate Interface for Crystal Quality and Photoelectric Performance. ACS Applied Materials & District Substrate 2020, 12, 6064-6073.	4.0	37
106	All-inorganic Cs2AgBiBr6/CuSCN-based photodetectors for weak light imaging. Science China Materials, 2021, 64, 198-208.	3.5	37
107	Regulation of ferric iron vacancy for Prussian blue analogue cathode to realize high-performance potassium ion storage. Nano Energy, 2022, 98, 107243.	8.2	37
108	Enhanced wettability performance of ultrathin ZnO nanotubes by coupling morphology and size effects. Nanoscale, 2012, 4, 5755.	2.8	36

#	Article	IF	CITATIONS
109	Utilizing polyaniline to dominate the crystal phase of Ni(OH)2 and its effect on the electrochemical property of polyaniline/Ni(OH)2 composite. Journal of Alloys and Compounds, 2015, 651, 126-134.	2.8	36
110	Flexible honeycomb-like NiMn layered double hydroxide/carbon cloth architecture for electrochemical energy storage. Materials Letters, 2016, 175, 275-278.	1.3	36
111	Insights on the mechanism of Na-ion storage in expanded graphite anode. Journal of Energy Chemistry, 2021, 53, 56-62.	7.1	36
112	Significantly Enhanced Detectivity of CIGS Broadband High-Speed Photodetectors by Grain Size Control and ALD-Al ₂ O ₃ Interfacial-Layer Modification. ACS Applied Materials & Amp; Interfaces, 2019, 11, 20157-20166.	4.0	34
113	Insights to pseudocapacitive charge storage of binary metal-oxide nanobelts decorated activated carbon cloth for highly-flexible hybrid-supercapacitors. Journal of Energy Storage, 2020, 31, 101602.	3.9	34
114	The influence of nitrogen source and doping sequence on the electrocatalytic activity for oxygen reduction reaction of nitrogen doped carbon materials. International Journal of Hydrogen Energy, 2016, 41, 13493-13503.	3.8	33
115	Solutionâ€Processed Highâ€Quality Cu ₂ O Thin Films as Hole Transport Layers for Pushing the Conversion Efficiency Limit of Cu ₂ O/Si Heterojunction Solar Cells. Solar Rrl, 2020, 4, 1900339.	3.1	33
116	Coordination and interface engineering to boost catalytic property of two-dimensional ZIFs for wearable Zn-air batteries. Journal of Energy Chemistry, 2022, 68, 78-86.	7.1	33
117	TiO ₂ nanowires for potential facile integration of solar cells and electrochromic devices. Nanotechnology, 2013, 24, 435403.	1.3	32
118	Facile synthesis of TiO2/Mn3O4 hierarchical structures for fiber-shaped flexible asymmetric supercapacitors with ultrahigh stability and tailorable performance. Journal of Materials Chemistry A, 2017, 5, 814-821.	5.2	32
119	Dynamic Reversible Evolution of Solid Electrolyte Interface in Nonflammable Triethyl Phosphate Electrolyte Enabling Safe and Stable Potassium″on Batteries. Advanced Functional Materials, 2022, 32, .	7.8	32
120	Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water. Materials Research Bulletin, 2011, 46, 2353-2358.	2.7	31
121	Re-oxidation reconstruction process of solid electrolyte interphase layer derived from highly active anion for potassium-ion batteries. Nano Energy, 2021, 87, 106150.	8.2	31
122	Manipulating Interfacial Stability Via Absorption-Competition Mechanism for Long-Lifespan Zn Anode. Nano-Micro Letters, 2022, 14, 31.	14.4	30
123	Highly active and stable non noble metal catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 10423-10434.	3.8	29
124	Quantifying oxygen diffusion in ZnO nanobelt. Applied Physics Letters, 2006, 89, 063125.	1.5	28
125	Co-doped Y-shape ZnO nanostructures: Synthesis, structure and properties. Solid State Communications, 2009, 149, 293-296.	0.9	28
126	Heterogeneous Nanostructures for Sodium Ion Batteries and Supercapacitors. ChemNanoMat, 2015, 1, 458-476.	1.5	28

#	Article	IF	CITATIONS
127	A Robust Solid Electrolyte Interphase Layer Augments the Ion Storage Capacity of Bimetallicâ€Sulfideâ€Containing Potassiumâ€ion Batteries. Angewandte Chemie, 2019, 131, 14882-14889.	1.6	27
128	Achieving 256 × 256â€Pixel Color Images by Perovskiteâ€Based Photodetectors Coupled with Algorithms. Advanced Functional Materials, 2021, 31, 2104320.	7.8	27
129	Measuring the transport property of ZnO tetrapod using in situ nanoprobes. Chemical Physics Letters, 2010, 484, 96-99.	1.2	26
130	TiO2 electron transport bilayer for all-inorganic perovskite photodetectors with remarkably improved UV stability toward imaging applications. Journal of Materials Science and Technology, 2021, 75, 39-47.	5.6	26
131	Strain sensing mechanism of the fabricated ZnO nanowire-polymer composite strain sensors. Chemical Physics Letters, 2012, 538, 99-101.	1.2	25
132	Tunneling-assisted highly sensitive and stable lead-free Cs ₃ Bi ₂ I ₉ perovskite photodetectors for diffuse reflection imaging. Journal of Materials Chemistry C, 2021, 9, 1008-1013.	2.7	25
133	Pt/Zn heterostructure as efficient air-electrocatalyst for long-life neutral Zn-air batteries. Science China Materials, 2021, 64, 1868-1875.	3.5	25
134	Underwater Multispectral Computational Imaging Based on a Broadband Water-Resistant Sb ₂ Se ₃ Heterojunction Photodetector. ACS Nano, 2022, 16, 5820-5829.	7.3	25
135	Statistical approach to quantifying the elastic deformation of nanomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11845-11850.	3.3	24
136	High-performance flexible dye-sensitized solar cells by using hierarchical anatase TiO ₂ nanowire arrays. RSC Advances, 2015, 5, 88052-88058.	1.7	24
137	Rational design of a tripartite-layered TiO ₂ photoelectrode: a candidate for enhanced power conversion efficiency in dye sensitized solar cells. Nanoscale, 2017, 9, 9913-9920.	2.8	24
138	Freestanding polypyrrole/carbon nanotube electrodes with high mass loading for robust flexible supercapacitors. Materials Chemistry Frontiers, 2021, 5, 1324-1329.	3.2	24
139	In Situ Monitoring the Potassium-lon Storage Enhancement in Iron Selenide with Ether-Based Electrolyte. Nano-Micro Letters, 2021, 13, 179.	14.4	24
140	Three-level hierarchical TiO2nanostructure based high efficiency dye-sensitized solar cells. CrystEngComm, 2014, 16, 1020-1025.	1.3	23
141	Anatase TiO ₂ single crystal hollow nanoparticles: their facile synthesis and high-performance in dye-sensitized solar cells. CrystEngComm, 2017, 19, 325-334.	1.3	23
142	Significantly Enhancing Response Speed of Self-Powered Cu ₂ ZnSn(S,Se) ₄ Thin Film Photodetectors by Atomic Layer Deposition of Simultaneous Electron Blocking and Electrode Protective Al ₂ O ₃ Layers. ACS Applied Materials & Interfaces, 2019, 11, 32097-32107.	4.0	23
143	Oxygen-sensing materials based on ruthenium(II) complex covalently assembled mesoporous MSU-3 silica. Sensors and Actuators B: Chemical, 2011, 160, 677-683.	4.0	22
144	In situ growth of a TiO ₂ layer on a flexible Ti substrate targeting the interface recombination issue of BiVO ₄ photoanodes for efficient solar water splitting. Journal of Materials Chemistry A, 2017, 5, 20195-20201.	5.2	22

#	Article	IF	CITATIONS
145	A decade of advanced rechargeable batteries development guided by in situ transmission electron microscopy. Nano Energy, 2021, 83, 105780.	8.2	22
146	Fabrication of n-type ZnO nanowire/graphene/p-type silicon hybrid structures and electrical properties of heterojunctions. Physical Chemistry Chemical Physics, 2012, 14, 16111.	1.3	20
147	Valence-State Controllable Fabrication of Cu _{2–<i>x</i>} O/Si Type-II Heterojunction for High-Performance Photodetectors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43376-43382.	4.0	20
148	Heteroatomic Interface Engineering of MOF-Derived Metal-Embedded P- and N-Codoped Zn Node Porous Polyhedral Carbon with Enhanced Sodium-Ion Storage. ACS Applied Energy Materials, 2020, 3, 8892-8902.	2.5	20
149	Controllable fabrication of \hat{l} ±-Ni(OH) < sub>2 < /sub> thin films with preheating treatment for long-term stable electrochromic and energy storage applications. Journal of Materials Chemistry C, 2020, 8, 3010-3016.	2.7	19
150	Pre-stabilized reduced graphene oxide by ammonia as carrier for Ni(OH)2 with excellent electrochemical property. Journal of Solid State Electrochemistry, 2015, 19, 229-239.	1.2	18
151	High-performance flexible supercapatteries enabled by binder-free two-dimensional mesoporous ultrathin nickel-ferrite nanosheets. Materials Chemistry Frontiers, 2021, 5, 3436-3447.	3.2	18
152	Enhancing the photodetection performance of MAPbl ₃ perovskite photodetectors by a dual functional interfacial layer for color imaging. Optics Letters, 2021, 46, 150.	1.7	18
153	Phytic acid-induced nitrogen configuration adjustment of active nitrogen-rich carbon nanosheets for high-performance potassium-ion storage. Journal of Materials Chemistry A, 2021, 9, 25445-25452.	5.2	18
154	Mechanical and electrical characterization of semiconducting ZnO nanorings by direct nano-manipulation. Applied Physics Letters, 2012, 101, 081910.	1.5	17
155	Energy Storage Performance Enhancement by Surface Engineering of Electrode Materials. Advanced Materials Interfaces, 2016, 3, 1600430.	1.9	17
156	p-Type NiO modified BiVO4 photoanodes with enhanced charge separation and solar water oxidation kinetics. Materials Letters, 2019, 249, 128-131.	1.3	17
157	Precise Phase Control of Largeâ€Scale Inorganic Perovskites via Vaporâ€Phase Anionâ€Exchange Strategy. Small, 2020, 16, e2005226.	5.2	17
158	Morphology-controllable ZnOnanotubes and nanowires: synthesis, growth mechanism and hydrophobic property. CrystEngComm, 2012, 14, 1723-1728.	1.3	16
159	High Voltage Microsupercapacitors Fabricated and Assembled by Laser Carving. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 45541-45548.	4.0	16
160	Phytoplankton derived and KOH activated mesoporous carbon materials for supercapacitors. Materials Letters, 2017, 205, 98-101.	1.3	15
161	Reliable Information Encryption and Digital Display Applications Based on Multistate Smart Windows. Advanced Optical Materials, 2018, 6, 1800338.	3.6	15
162	Spectrum-shaped Si-perovskite hybrid photodetectors for hyperspectral bioimaging. Photonics Research, 2021, 9, 1734.	3.4	15

#	Article	lF	CITATIONS
163	Multicolor electrochromic device based on reversible metal electrodeposition of Bi-Cu with controlled morphology and composition ratio. Chemical Engineering Journal, 2022, 438, 135469.	6.6	15
164	Optical modeling of organic solar cells based on rubrene and C ₇₀ . Applied Optics, 2012, 51, 5718.	0.9	14
165	Interfacial engineering to boost photoresponse performance and stability of V2O5/n-Si heterojunction photodetectors. Journal of Alloys and Compounds, 2020, 819, 153063.	2.8	14
166	3D Porous Nb ₂ C MXene/reduced graphene oxide aerogel coupled with NiFe alloy nanoparticles for wearable Zn–air batteries. Materials Chemistry Frontiers, 2021, 5, 7315-7322.	3.2	14
167	Supramolecular Hydrogels Sustained Release Triclosan with Controlled Antibacterial Activity and Limited Cytotoxicity. Science of Advanced Materials, 2013, 5, 1400-1409.	0.1	14
168	Bismuth oxychloride anchoring on graphene nanosheets as anode with a high relative energy density for potassium ion battery. Journal of Colloid and Interface Science, 2021, 599, 857-862.	5.0	13
169	A simple-structured silicon photodetector possessing asymmetric Schottky junction for NIR imaging. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 412, 127586.	0.9	13
170	Recent progress of electrode materials cooperated with potassium bis(fluorosulfonyl)imide–containing electrolyte for K-ion batteries. Materials Today Advances, 2020, 6, 100035.	2.5	13
171	Low-Temperature Vapor-Phase Anion-Exchange Strategy for Wide-Bandgap Double-Perovskite Cs ₂ AgBiCl ₆ Films toward Weak Ultraviolet Light Imaging. ACS Applied Materials & Amp; Interfaces, 2022, 14, 26279-26286.	4.0	13
172	Size dependence of the mechanical properties of ZnO nanobelts. Philosophical Magazine, 2007, 87, 2135-2141.	0.7	11
173	In Situ Monitoring Small Energy Storage Change of Electrochromic Supercapacitors via Perovskite Photodetectors. Small Methods, 2020, 4, 1900731.	4.6	11
174	Crystal Surface Engineering Induced Active Hexagonal Co ₂ Pâ€V ₂ O ₃ for Highly Stable Lithium–Sulfur Batteries. Small, 2022, 18, e2200405.	5.2	11
175	Facile conversion of rutile titanium dioxide nanowires to nanotubes for enhancing the performance of dye-sensitized solar cells. CrystEngComm, 2015, 17, 1115-1120.	1.3	10
176	Atomic layer deposited Al ₂ O ₃ layer confinement: an efficient strategy to synthesize durable MOF-derived catalysts toward the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2021, 8, 1432-1438.	3.0	10
177	Interfacial Gradient-Energy-Band-Alignment Modulation via a Vapor-Phase Anion-Exchange Reaction toward Lead-Free Perovskite Photodetectors with Excellent UV Imaging Capability. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53194-53201.	4.0	10
178	Achieving dual-color imaging by dual-band perovskite photodetectors coupled with algorithms. Journal of Colloid and Interface Science, 2022, 625, 297-304.	5.0	10
179	Alginate hydrogel sphere improves the alkali and heat resistances of isothiazolinones with longâ€term antibacterial activity. Journal of Applied Polymer Science, 2013, 130, 1554-1561.	1.3	9
180	Fabrication and integration of quasi-one-dimensional hierarchical TiO ₂ nanotubes for dye-sensitized solar cells. CrystEngComm, 2015, 17, 8327-8331.	1.3	9

#	Article	IF	CITATIONS
181	Improving the Quality of the Si/Cu ₂ O Interface by Methylâ€Group Passivation and Its Application in Photovoltaic Devices. Advanced Materials Interfaces, 2017, 4, 1600833.	1.9	9
182	Ultra-Stable Potassium Ion Storage of Nitrogen-Doped Carbon Nanofiber Derived from Bacterial Cellulose. Nanomaterials, 2021, 11, 1130.	1.9	9
183	Improving rechargeability of Prussian blue cathode by graphene as conductive agent for sodium ion batteries. Surfaces and Interfaces, 2021, 23, 100911.	1.5	9
184	Structural stability and electrical properties of the chain structure of Ca2CuO3 under high pressure. Physical Review B, 2003, 67, .	1.1	8
185	SnS ₂ Urchins as Anode Material for Lithium-ion Battery. Electrochemistry, 2016, 84, 420-426.	0.6	8
186	Influence of Annealing on Raman Spectrum of Graphene in Different Gaseous Environments. Spectroscopy Letters, 2014, 47, 465-470.	0.5	7
187	Construction of binder-free hierarchical mesoporous 3D Co–Mo–O flowers assembled by nanosheets for aqueous symmetrical 1.2†V supercapacitor in basic electrolyte. Electrochimica Acta, 2020, 330, 135201.	2.6	7
188	UV soaking for enhancing the photocurrent and response speed of Cs2AgBiBr6-based all-inorganic perovskite photodetectors. Science China Materials, 2022, 65, 442-450.	3.5	7
189	The applications of statistical quantification techniques in nanomechanics and nanoelectronics. Nanotechnology, 2010, 21, 405704.	1.3	6
190	Continuous release and antibacterial activity of chlorhexidine acetate intercalated vermiculite. Materials Research Innovations, 2013, 17, 195-200.	1.0	6
191	Self-powered and broadband germanium/PEDOT:PSS heterojunction photodetectors for near-infrared biomedical imaging applications. Science China Technological Sciences, 2021, 64, 2523-2531.	2.0	6
192	Fabrication and stability of the Ca1â^'xCuO2 chain structure during high-pressure and high-temperature sintering. Journal of Alloys and Compounds, 2010, 493, 517-521.	2.8	5
193	General strategy for improving dye-sensitized solar cells by using sub-micrometer cavities. Journal of Alloys and Compounds, 2014, 583, 300-304.	2.8	5
194	Cs2AgBiBr6-based heterojunction photodetector for weak-light imaging application. Surfaces and Interfaces, 2022, 29, 101705.	1.5	5
195	Gold Enhanced Graphene-Based Photodetector on Optical Fiber with Ultrasensitivity over Near-Infrared Bands. Nanomaterials, 2022, 12, 124.	1.9	4
196	ZnO nanostructures for optoelectronic applications. , 2008, , .		3
197	Characterization of structural and electrical properties of ZnO tetrapods. International Journal of Minerals, Metallurgy and Materials, 2011, 18, 686-690.	2.4	3
198	Ultralong one-dimension Al3CON nanostructures: synthesis, elastic deformation behavior and photoelectric properties. Journal of Materials Chemistry, 2012, 22, 12830.	6.7	3

#	Article	IF	CITATIONS
199	Optimization and degradation of rubrene/C70 heterojunction solar cells. Optoelectronics Letters, 2012, 8, 93-96.	0.4	3
200	Tailorable pseudocapacitors for energy storage clothes. RSC Advances, 2016, 6, 67764-67770.	1.7	3
201	Reducing the dark current of cuprous oxide/Au schottky photodetector for high signal-to-noise ratio imaging. Journal Physics D: Applied Physics, 2020, 53, 224003.	1.3	3
202	Semi-coherent cation-rich Mn-Cu oxides heterostructures as cathode for novel aqueous potassium dual-ion energy storage devices. Journal of Colloid and Interface Science, 2021, 597, 75-83.	5.0	3
203	Design of reduced graphene oxide coating carbon sub-microspheres hierarchical nanostructure for ultra-stable potassium storage performance. Journal of Colloid and Interface Science, 2022, 626, 858-865.	5.0	3
204	Growth and characterization of ZnO nanowires for various sensor applications. , 2007, , .		2
205	Thickness-dependence of S-shaped J–V curves of planar heterojunction organic solar cells containing NTCDA interlayer: Impedance–potential measurement and underlying mechanism. Solar Energy Materials and Solar Cells, 2016, 148, 39-43.	3.0	2
206	Single-wired array light detector based on photoacoustic effect. Optics and Lasers in Engineering, 2021, 139, 106460.	2.0	2
207	A review of growth and characterization of ZnO nanostructures for various optical applications. , 2007, , .		1
208	NiCoB based in-plane energy storage textile with enhanced mechanical performance. Applied Physics Letters, 2022, 120, .	1.5	1
209	Structural stability of infinite-layer CaCuCO2 under high pressure. Science Bulletin, 2003, 48, 1201-1203.	1.7	0
210	Structural phase transition of edge-sharing copper oxide Ca0.85CuO2 under high pressure. Science Bulletin, 2004, 49, 872.	1.7	0
211	Structural phase transition of edge-sharing copper oxide Ca0.85CuO2 under high pressure. Science Bulletin, 2004, 49, 872-874.	1.7	0
212	Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices ChemInform, 2005, 36, no.	0.1	0
213	Nanomaterials and Nanodevices for Energy Applications. Journal of Nanomaterials, 2014, 2014, 1-1.	1.5	0
214	Flexible supercapacitors based on carbon nanotube/MnO2 nanotube hybrid porous films for wearable electronic devices. , 2015, , .		0
215	Developing MnO2-based high-performance flexible supercapacitors. , 2015, , .		0
216	A bi-layered anatase titania architecture consisting of hierarchical nanotubes and hollow microspheres for high-performance dye-sensitized solar cells. , 2015, , .		0

#	Article	IF	CITATIONS
217	Structural stability of infinite-layer CaCuO2 under high pressure. Science Bulletin, 2003, 48, 1201.	1.7	O
218	Large-Scale Fabrication of Pseudocapacitive Glass Windows that Combine Electrochromism and Energy Storage. , $2015, , .$		0
219	Facile conversion of rutile titanium dioxide nanowires to nanotubes for enhancing performance of dye-sensitized solar cells., 2015,,.		O