Stephen P Good

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9270587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 2015, 349, 175-177.	12.6	467
2	Global synthesis of vegetation control on evapotranspiration partitioning. Geophysical Research Letters, 2014, 41, 6753-6757.	4.0	285
3	Comment on "The global tree restoration potential― Science, 2019, 366, .	12.6	185
4	Solar PV Power Potential is Greatest Over Croplands. Scientific Reports, 2019, 9, 11442.	3.3	168
5	Climatological determinants of woody cover in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4902-4907.	7.1	167
6	Measurements and Observations in the XXI century (MOXXI): innovation and multi-disciplinarity to sense the hydrological cycle. Hydrological Sciences Journal, 2018, 63, 169-196.	2.6	151
7	Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences, 2019, 16, 3747-3775.	3.3	150
8	Stable Isotope Analysis of Precipitation Samples Obtained via Crowdsourcing Reveals the Spatiotemporal Evolution of Superstorm Sandy. PLoS ONE, 2014, 9, e91117.	2.5	103
9	<i>î´</i> ² H isotopic flux partitioning of evapotranspiration over a grass field following a water pulse and subsequent dry down. Water Resources Research, 2014, 50, 1410-1432.	4.2	96
10	Partitioning of evapotranspiration in remote sensing-based models. Agricultural and Forest Meteorology, 2018, 260-261, 131-143.	4.8	91
11	Direct quantification of leaf transpiration isotopic composition. Agricultural and Forest Meteorology, 2012, 154-155, 127-135.	4.8	87
12	Inferring the source of evaporated waters using stable H and O isotopes. Oecologia, 2018, 187, 1025-1039.	2.0	82
13	The effect of warming on grassland evapotranspiration partitioning using laser-based isotope monitoring techniques. Geochimica Et Cosmochimica Acta, 2013, 111, 28-38.	3.9	67
14	Stable Isotopes of Water Vapor in the Vadose Zone: A Review of Measurement and Modeling Techniques. Vadose Zone Journal, 2012, 11, vzj2011.0165.	2.2	64
15	Using atmospheric trajectories to model the isotopic composition of rainfall in central Kenya. Ecosphere, 2013, 4, 1-18.	2.2	61
16	Uncertainties in the assessment of the isotopic composition of surface fluxes: A direct comparison of techniques using laserâ€based water vapor isotope analyzers. Journal of Geophysical Research, 2012, 117,	3.3	58
17	Comment on "The extent of forest in dryland biomes― Science, 2017, 358,	12.6	57
18	D/H isotope ratios in the global hydrologic cycle. Geophysical Research Letters, 2015, 42, 5042-5050.	4.0	56

Stephen P Good

#	Article	IF	CITATIONS
19	Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area. Water Resources Research, 2016, 52, 5891-5910.	4.2	56
20	Incorporating water isoscapes in hydrological and water resource investigations. Wiley Interdisciplinary Reviews: Water, 2015, 2, 107-119.	6.5	55
21	A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts. Nature Ecology and Evolution, 2017, 1, 1883-1888.	7.8	53
22	Contribution of water-limited ecoregions to their own supply of rainfall. Environmental Research Letters, 2016, 11, 124007.	5.2	47
23	Patterns of local and nonlocal water resource use across the western U.S. determined via stable isotope intercomparisons. Water Resources Research, 2014, 50, 8034-8049.	4.2	43
24	Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3247-3252.	7.1	35
25	Tree cover shows strong sensitivity to precipitation variability across the global tropics. Global Ecology and Biogeography, 2018, 27, 450-460.	5.8	35
26	Estimating Global Ecosystem Isohydry/Anisohydry Using Active and Passive Microwave Satellite Data. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3306-3321.	3.0	34
27	Continental-scale impacts of intra-seasonal rainfall variability on simulated ecosystem responses in Africa. Biogeosciences, 2014, 11, 6939-6954.	3.3	31
28	Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models. Remote Sensing, 2018, 10, 1601.	4.0	28
29	Simulated sensitivity of African terrestrial ecosystem photosynthesis to rainfall frequency, intensity, and rainy season length. Environmental Research Letters, 2018, 13, 025013.	5.2	26
30	Predicting Hydrologic Function With Aquatic Gene Fragments. Water Resources Research, 2018, 54, 2424-2435.	4.2	22
31	Hydroclimatic and ecohydrological resistance/resilience conditions across tropical biomes of <scp>C</scp> osta <scp>R</scp> ica. Ecohydrology, 2017, 10, e1860.	2.4	18
32	Characterizing ecohydrological and biogeochemical connectivity across multiple scales: a new conceptual framework. Ecohydrology, 2012, 5, 221-233.	2.4	17
33	Global Patterns of the Contributions of Storm Frequency, Intensity, and Seasonality to Interannual Variability of Precipitation. Journal of Climate, 2016, 29, 3-15.	3.2	17
34	Using stable water isotopes to assess the influence of irrigation structural configurations on evaporation losses in semiarid agricultural systems. Agricultural and Forest Meteorology, 2020, 291, 108083.	4.8	17
35	Direct partitioning of eddy-covariance water and carbon dioxide fluxes into ground and plant components. Agricultural and Forest Meteorology, 2022, 315, 108790.	4.8	17
36	Plant Water Uptake Thresholds Inferred From Satellite Soil Moisture. Geophysical Research Letters, 2020, 47, e2020GL087077.	4.0	16

Stephen P Good

#	Article	IF	CITATIONS
37	An ecohydrological framework to explain shifts in vegetation organization across climatological gradients. Ecohydrology, 2017, 10, e1809.	2.4	10
38	River Microbiome Composition Reflects Macroscale Climatic and Geomorphic Differences in Headwater Streams. Frontiers in Water, 2020, 2, .	2.3	8
39	Bayesian estimates of the mean recharge elevations of water sources in the Central America region using stable water isotopes. Journal of Hydrology: Regional Studies, 2020, 32, 100739.	2.4	7
40	Probabilistic inference of ecohydrological parameters using observations from point to satellite scales. Hydrology and Earth System Sciences, 2018, 22, 3229-3243.	4.9	5
41	Information-based uncertainty decomposition in dual-channel microwave remote sensing of soil moisture. Hydrology and Earth System Sciences, 2021, 25, 5029-5045.	4.9	5
42	Calibration Strategies for Detecting Macroscale Patterns in NEON Atmospheric Carbon Isotope Observations. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005862.	3.0	4
43	The NEON Daily Isotopic Composition of Environmental Exchanges Dataset. Scientific Data, 2022, 9, .	5.3	4
44	Analytical expressions of variability in ecosystem structure and function obtained from three-dimensional stochastic vegetation modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20130003.	2.1	3
45	A Statistical Method for Generating Temporally Downscaled Geochemical Tracers in Precipitation. Journal of Hydrometeorology, 2021, , .	1.9	3
46	Differences in soil evaporation between row and interrow positions in furrowed agricultural fields. Vadose Zone Journal, 2020, 19, e20086.	2.2	2
47	The Value of L-Band Soil Moisture and Vegetation Optical Depth Estimates in the Prediction of Vegetation Phenology. Remote Sensing, 2021, 13, 1343.	4.0	2
48	High Frequency Trends in the Isotopic Composition of Superstorm Sandy. , 2015, , 41-55.		1