List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/926963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	É'Oâ€Conotoxin GeXIVA isomers modulate Nâ€ŧype calcium (Ca _V 2.2) channels and inwardlyâ€rectifying potassium (GIRK) channels via GABA _B receptor activation. Journal of Neurochemistry, 2022, 160, 154-171.	3.9	6
2	Comparative analysis of cyclotide-producing plant cell suspensions presents opportunities for cyclotide plant molecular farming. Phytochemistry, 2022, 195, 113053.	2.9	4
3	Towards a generic prototyping approach for therapeutically-relevant peptides and proteins in a cell-free translation system. Nature Communications, 2022, 13, 260.	12.8	5
4	Protocols for measuring the stability and cytotoxicity of cyclotides. Methods in Enzymology, 2022, 663, 19-40.	1.0	1
5	Mutagenesis of bracelet cyclotide hyen D reveals functionally and structurally critical residues for membrane binding and cytotoxicity. Journal of Biological Chemistry, 2022, 298, 101822.	3.4	4
6	Mutagenesis of cyclotide Cter 27 exemplifies a robust folding strategy for bracelet cyclotides. Peptide Science, 2022, 114, .	1.8	3
7	Cyclic gomesin, a stable redesigned spider peptide able to enter cancer cells. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183480.	2.6	16
8	Angler Peptides: Macrocyclic Conjugates Inhibit p53:MDM2/X Interactions and Activate Apoptosis in Cancer Cells. ACS Chemical Biology, 2021, 16, 414-428.	3.4	16
9	An Integrated Molecular Grafting Approach for the Design of Keap1-Targeted Peptide Inhibitors. ACS Chemical Biology, 2021, 16, 1276-1287.	3.4	11
10	The emerging landscape of peptide-based inhibitors of PCSK9. Atherosclerosis, 2021, 330, 52-60.	0.8	23
11	Enabling Efficient Folding and High-Resolution Crystallographic Analysis of Bracelet Cyclotides. Molecules, 2021, 26, 5554.	3.8	10
12	Rational Design of Potent Peptide Inhibitors of the PD-1:PD-L1 Interaction for Cancer Immunotherapy. Journal of the American Chemical Society, 2021, 143, 18536-18547.	13.7	22
13	An Ultrapotent and Selective Cyclic Peptide Inhibitor of Human β-Factor XIIa in a Cyclotide Scaffold. Journal of the American Chemical Society, 2021, 143, 18481-18489.	13.7	22
14	Evaluation of the <i>in Vivo</i> Aphrodisiac Activity of a Cyclotide Extract from <i>Hybanthus enneaspermus</i> . Journal of Natural Products, 2020, 83, 3736-3743.	3.0	6
15	Discovery and mechanistic studies of cytotoxic cyclotides from the medicinal herb Hybanthus enneaspermus. Journal of Biological Chemistry, 2020, 295, 10911-10925.	3.4	22
16	Exploring the Sequence Diversity of Cyclotides from Vietnamese <i>Viola</i> Species. Journal of Natural Products, 2020, 83, 1817-1828.	3.0	12
17	Circular Permutation of the Native Enzyme-Mediated Cyclization Position in Cyclotides. ACS Chemical Biology, 2020, 15, 962-969.	3.4	7
18	Insecticidal diversity of butterfly pea (Clitoria ternatea) accessions. Industrial Crops and Products, 2020, 147, 112214.	5.2	15

#	Article	IF	CITATIONS
19	Enhanced Activity against Multidrug-Resistant Bacteria through Coapplication of an Analogue of Tachyplesin I and an Inhibitor of the QseC/B Signaling Pathway. Journal of Medicinal Chemistry, 2020, 63, 3475-3484.	6.4	20
20	Cellular Uptake and Cytosolic Delivery of a Cyclic Cystine Knot Scaffold. ACS Chemical Biology, 2020, 15, 1650-1661.	3.4	14
21	Cell Membrane Composition Drives Selectivity and Toxicity of Designed Cyclic Helix–Loop–Helix Peptides with Cell Penetrating and Tumor Suppressor Properties. ACS Chemical Biology, 2019, 14, 2071-2087.	3.4	15
22	Cyclotides: Disulfide-rich peptide toxins in plants. Toxicon, 2019, 172, 33-44.	1.6	36
23	Characterization of Tachyplesin Peptides and Their Cyclized Analogues to Improve Antimicrobial and Anticancer Properties. International Journal of Molecular Sciences, 2019, 20, 4184.	4.1	38
24	Pharmacokinetic characterization of kalata B1 and related therapeutics built on the cyclotide scaffold. International Journal of Pharmaceutics, 2019, 565, 437-446.	5.2	12
25	Insecticidal spider toxins are high affinity positive allosteric modulators of the nicotinic acetylcholine receptor. FEBS Letters, 2019, 593, 1336-1350.	2.8	23
26	Efficient Enzymatic Cyclization of Disulfideâ€Rich Peptides by Using Peptide Ligases. ChemBioChem, 2019, 20, 1524-1529.	2.6	22
27	Synthesis, Racemic X-ray Crystallographic, and Permeability Studies of Bioactive Orbitides from Jatropha Species. Journal of Natural Products, 2018, 81, 2436-2445.	3.0	16
28	Understanding the Diversity and Distribution of Cyclotides from Plants of Varied Genetic Origin. Journal of Natural Products, 2017, 80, 1522-1530.	3.0	25
29	Backbone cyclization of analgesic conotoxin GeXIVA facilitates direct folding of the ribbon isomer. Journal of Biological Chemistry, 2017, 292, 17101-17112.	3.4	15
30	Redesigned Spider Peptide with Improved Antimicrobial and Anticancer Properties. ACS Chemical Biology, 2017, 12, 2324-2334.	3.4	43
31	Structural and functional characterization of chimeric cyclotides from the Möbius and trypsin inhibitor subfamilies. Biopolymers, 2017, 108, e22927.	2.4	11
32	Lengths of the C-Terminus and Interconnecting Loops Impact Stability of Spider-Derived Gating Modifier Toxins. Toxins, 2017, 9, 248.	3.4	21
33	Development of cellâ€penetrating peptideâ€based drug leads to inhibit MDMX:p53 and MDM2:p53 interactions. Biopolymers, 2016, 106, 853-863.	2.4	29
34	Front Cover: Cyclisation of Disulfide-Rich Conotoxins in Drug Design Applications (Eur. J. Org. Chem.) Tj ETQq0 () 0 rgBT /(Overlock 10 Tf
35	Cyclisation of Disulfideâ€Rich Conotoxins in Drug Design Applications. European Journal of Organic Chemistry, 2016, 2016, 3462-3472.	2.4	13

36Inhibition of tau aggregation using a naturally-occurring cyclic peptide scaffold. European Journal of
Medicinal Chemistry, 2016, 109, 342-349.5.542

#	Article	IF	CITATIONS
37	Optimization of the cyclotide framework to improve cell penetration properties. Frontiers in Pharmacology, 2015, 6, 17.	3.5	31
38	Design of substrate-based BCR-ABL kinase inhibitors using the cyclotide scaffold. Scientific Reports, 2015, 5, 12974.	3.3	58
39	The Prototypic Cyclotide Kalata B1 Has a Unique Mechanism of Entering Cells. Chemistry and Biology, 2015, 22, 1087-1097.	6.0	71
40	Fmoc-Based Synthesis of Disulfide-Rich Cyclic Peptides. Journal of Organic Chemistry, 2014, 79, 5538-5544.	3.2	110
41	Effects of arginine 10 to lysine substitution on ωâ€conotoxin <scp>CVIE</scp> and <scp>CVIF</scp> block of <scp>Ca_v</scp> 2.2 channels. British Journal of Pharmacology, 2014, 171, 3313-3327.	5.4	6
42	Semienzymatic Cyclization of Disulfide-rich Peptides Using Sortase A. Journal of Biological Chemistry, 2014, 289, 6627-6638.	3.4	83
43	Anticancer and Toxic Properties of Cyclotides are Dependent on Phosphatidylethanolamine Phospholipid Targeting. ChemBioChem, 2014, 15, 1956-1965.	2.6	60
44	High-affinity Cyclic Peptide Matriptase Inhibitors. Journal of Biological Chemistry, 2013, 288, 13885-13896.	3.4	122
45	The Antimicrobial Activity of Sub3 is Dependent on Membrane Binding and Cellâ€Penetrating Ability. ChemBioChem, 2013, 14, 2013-2022.	2.6	55
46	Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 944-955.	2.6	144
47	Cyclization of the Antimicrobial Peptide Gomesin with Native Chemical Ligation: Influences on Stability and Bioactivity. ChemBioChem, 2013, 14, 617-624.	2.6	62
48	Cyclotides Suppress Human T-Lymphocyte Proliferation by an Interleukin 2-Dependent Mechanism. PLoS ONE, 2013, 8, e68016.	2.5	67
49	A Novel Quantitative Kinase Assay Using Bacterial Surface Display and Flow Cytometry. PLoS ONE, 2013, 8, e80474.	2.5	20
50	Phosphatidylethanolamine Binding Is a Conserved Feature of Cyclotide-Membrane Interactions. Journal of Biological Chemistry, 2012, 287, 33629-33643.	3.4	115
51	Identification and Characterization of a New Family of Cell-penetrating Peptides. Journal of Biological Chemistry, 2011, 286, 36932-36943.	3.4	159
52	Decoding the Membrane Activity of the Cyclotide Kalata B1. Journal of Biological Chemistry, 2011, 286, 24231-24241.	3.4	155
53	Lysine-scanning Mutagenesis Reveals an Amendable Face of the Cyclotide Kalata B1 for the Optimization of Nematocidal Activity. Journal of Biological Chemistry, 2010, 285, 10797-10805.	3.4	99
54	Cyclotide Interactions with the Nematode External Surface. Antimicrobial Agents and Chemotherapy, 2010, 54, 2160-2166.	3.2	44

#	Article	IF	CITATIONS
55	Membrane Interactions and the Formation of Multimeric Pores by Cyclotides. Biophysical Journal, 2010, 98, 609a.	0.5	Ο
56	The Biological Activity of the Prototypic Cyclotide Kalata B1 Is Modulated by the Formation of Multimeric Pores. Journal of Biological Chemistry, 2009, 284, 20699-20707.	3.4	144
57	Cyclotides: Natural, Circular Plant Peptides that Possess Significant Activity against Gastrointestinal Nematode Parasites of Sheep. Biochemistry, 2008, 47, 5581-5589.	2.5	162