List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9269481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of crust temperature and water content on acrylamide formation during baking of white bread: Steam and falling temperature baking. LWT - Food Science and Technology, 2007, 40, 1708-1715.	2.5	143
2	Perspectives from CO+RE: How COVID-19 changed our food systems and food security paradigms. Current Research in Food Science, 2020, 3, 166-172.	2.7	134
3	Effects of Combined Osmotic and Microwave Dehydration of Apple on Texture, Microstructure and Rehydration Characteristics. LWT - Food Science and Technology, 2001, 34, 95-101.	2.5	122
4	Food powder handling and processing: Industry problems, knowledge barriers and research opportunities. Chemical Engineering and Processing: Process Intensification, 2005, 44, 209-214.	1.8	111
5	Mechanisms and Prevention of Plant Tissue Collapse during Dehydration: A Critical Review. Critical Reviews in Food Science and Nutrition, 2003, 43, 447-479.	5.4	96
6	Heat transfer from a slot air jet impinging on a circular cylinder. Journal of Food Engineering, 2004, 63, 393-401.	2.7	95
7	Effect of sugar, cocoa particles and lecithin on cocoa butter crystallisation in seeded and non-seeded chocolate model systems. Journal of Food Engineering, 2011, 104, 70-80.	2.7	88
8	Effect of powder densities, particle size and shape on mixture quality of binary food powder mixtures. Powder Technology, 2015, 272, 165-172.	2.1	77
9	Effect of microwave power, air velocity and temperature on the final drying of osmotically dehydrated bananas. Journal of Food Engineering, 2007, 81, 79-87.	2.7	67
10	Microwave Convective Drying of Plant Foods at Constant and Variable Microwave Power. Drying Technology, 2007, 25, 1149-1153.	1.7	62
11	Effect of infrared heating on quality and microbial decontamination in paprika powder. Journal of Food Engineering, 2008, 86, 17-24.	2.7	59
12	Thermal pretreatments of carrot pieces using different heating techniques: Effect on quality related aspects. Innovative Food Science and Emerging Technologies, 2009, 10, 522-529.	2.7	58
13	Microwave heat treatment of apple before air dehydration – effects on physical properties and microstructure. Journal of Food Engineering, 2000, 46, 173-182.	2.7	56
14	Processing of tomato: impact on <i>in vitro</i> bioaccessibility of lycopene and textural properties. Journal of the Science of Food and Agriculture, 2010, 90, 1665-1672.	1.7	56
15	Retention of β-carotene and vitamin C in dried mango osmotically pretreated with osmotic solutions containing calcium or ascorbic acid. Food and Bioproducts Processing, 2016, 98, 320-326.	1.8	54
16	Combined convective and microwave assisted drying: Experiments and modeling. Journal of Food Engineering, 2012, 112, 304-312.	2.7	52
17	COVID-19 and Sustainable Food Systems: What Should We Learn Before the Next Emergency. Frontiers in Sustainable Food Systems, 2021, 5,	1.8	52
18	Supercritical CO2 extraction of bilberry (Vaccinium myrtillus L.) seed oil: Fatty acid composition and antioxidant activity. Journal of Supercritical Fluids, 2018, 135, 91-97.	1.6	49

#	Article	IF	CITATIONS
19	Microwave assisted air drying of osmotically treated pineapple with variable power programmes. Journal of Food Engineering, 2012, 108, 304-311.	2.7	48
20	Effects of temperature, pH, and controlled water activity on inactivation of spores of Bacillus cereus in paprika powder by near-IR radiation. Journal of Food Engineering, 2008, 89, 319-324.	2.7	44
21	Effect of microwave assisted blanching on the ascorbic acid oxidase inactivation and vitamin C degradation in frozen mangoes. Innovative Food Science and Emerging Technologies, 2018, 48, 248-257.	2.7	43
22	Microwave and convective dehydration of ethanol treated and frozen apple - physical properties and drying kinetics. International Journal of Food Science and Technology, 2002, 37, 603-614.	1.3	42
23	A comparative study of infrared and microwave heating for microbial decontamination of paprika powder. Frontiers in Microbiology, 2015, 6, 1071.	1.5	42
24	Application of the Guggenheim, Anderson and De Boer model to correlate water activity and moisture content during osmotic dehydration of apples. Journal of Food Engineering, 2004, 61, 467-470.	2.7	41
25	Mechanical and Thermal Pretreatments of Crushed Tomatoes: Effects on Consistency andâ€, <i>In Vitro</i> â€,Accessibility of Lycopene. Journal of Food Science, 2009, 74, E386-95.	1.5	41
26	Influence of dielectric and sorption properties on drying behaviour and energy efficiency during microwave convective drying of selected food and non-food inorganic materials. Journal of Food Engineering, 2010, 97, 144-153.	2.7	40
27	Quality optimisation of combined osmotic dehydration and microwave assisted air drying of pineapple using constant power emission. Food and Bioproducts Processing, 2012, 90, 171-179.	1.8	40
28	Comparative study on quality of whole milk processed by high hydrostatic pressure or thermal pasteurization treatment. LWT - Food Science and Technology, 2020, 127, 109370.	2.5	40
29	Flow and heat transfer from multiple slot air jets impinging on circular cylinders. Journal of Food Engineering, 2005, 67, 273-280.	2.7	39
30	Impact of pre-crystallization process on structure and product properties in dark chocolate. Journal of Food Engineering, 2013, 114, 90-98.	2.7	38
31	Caseinâ€Based Powders: Characteristics and Rehydration Properties. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 240-254.	5.9	38
32	Effect of Cassava Flour Characteristics on Properties of Cassava-Wheat-Maize Composite Bread Types. International Journal of Food Science, 2013, 2013, 1-10.	0.9	37
33	Innovative Technologies for Food Preservation. , 2018, , 25-51.		37
34	Physical and functional properties of cheese powders affected by sweet whey powder addition before or after spray drying. Powder Technology, 2018, 323, 139-148.	2.1	35
35	Effect of Infrared Blanching on Enzyme Activity and Retention of βâ€Carotene and Vitamin C in Dried Mango. Journal of Food Science, 2015, 80, E1235-42.	1.5	34
36	3D printing of a high protein yoghurt-based gel: Effect of protein enrichment and gelatine on physical and sensory properties. Food Research International, 2021, 147, 110517.	2.9	32

#	Article	IF	CITATIONS
37	Comparison of drying kinetics and texture effects of two calcium pretreatments before microwave-assisted dehydration of apple and potato. International Journal of Food Science and Technology, 2003, 38, 411-420.	1.3	30
38	Effect of pre-crystallization process and solid particle addition on microstructure in chocolate model systems. Food Research International, 2011, 44, 1339-1350.	2.9	29
39	Digestion patterns of proteins in pasteurized and ultra-high temperature milk using in vitro gastric models of adult and elderly. Journal of Food Engineering, 2021, 292, 110305.	2.7	29
40	Analysis of temperature distribution in potato tissue during blanching and its effect on the absolute residual pectin methylesterase activity. Journal of Food Engineering, 2004, 65, 433-441.	2.7	28
41	Investigation of the application of digital colour imaging to assess the mixture quality of binary food powder mixes. Journal of Food Engineering, 2014, 128, 140-145.	2.7	28
42	Effects of pulsed electric field on fat globule structure, lipase activity, and fatty acid composition in raw milk and milk with different fat globule sizes. Innovative Food Science and Emerging Technologies, 2021, 67, 102548.	2.7	28
43	Effect of Nearâ€infrared Radiation and Jet Impingement Heat Transfer on Crust Formation of Bread. Journal of Food Science, 2005, 70, e484.	1.5	25
44	Effect of hydrocolloids and emulsifiers on the shelfâ€life of composite cassavaâ€maizeâ€wheat bread after storage. Food Science and Nutrition, 2016, 4, 636-644.	1.5	25
45	Supercritical Fluid Extraction of Berry Seeds: Chemical Composition and Antioxidant Activity. Journal of Food Quality, 2018, 2018, 1-10.	1.4	25
46	Cycled high hydrostatic pressure processing of whole and skimmed milk: Effects on physicochemical properties. Innovative Food Science and Emerging Technologies, 2020, 63, 102378.	2.7	25
47	Prediction of water and soluble solids concentration during osmotic dehydration of mango. Food and Bioproducts Processing, 2008, 86, 7-13.	1.8	24
48	Effect of novel drying techniques on the extraction of anthocyanins from bilberry press cake using supercritical carbon dioxide. Innovative Food Science and Emerging Technologies, 2015, 29, 209-214.	2.7	24
49	Cheese feed to powder: Effects of cheese age, added dairy ingredients and spray drying temperature on properties of cheese powders. Journal of Food Engineering, 2018, 237, 215-225.	2.7	24
50	Effect of processing on <i>in vitro</i> digestibility (IVPD) of food proteins. Critical Reviews in Food Science and Nutrition, 2023, 63, 2790-2839.	5.4	24
51	Effect of Hydrocolloids and Emulsifiers on Baking Quality of Composite Cassava-Maize-Wheat Breads. International Journal of Food Science, 2014, 2014, 1-9.	0.9	23
52	The Role of Processing Parameters on Energy Efficiency during Microwave Convective Drying of Porous Materials. Drying Technology, 2009, 27, 173-185.	1.7	22
53	Casein micelles in milk as sticky spheres. Soft Matter, 2020, 16, 9955-9963.	1.2	22
54	Calcium: A comprehensive review on quantification, interaction with milk proteins and implications for processing of dairy products. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5616-5640.	5.9	22

#	Article	IF	CITATIONS
55	Prediction of regions of coalescence and agglomeration along a spray dryer—Application to skim milk powder. Chemical Engineering Research and Design, 2015, 104, 703-712.	2.7	20
56	Dry mixing of food powders: Effect of water content and composition on mixture quality of binary mixtures. Journal of Food Engineering, 2015, 149, 229-236.	2.7	20
57	Physical properties and storage stability of reverse osmosis skim milk concentrates: Effects of skim milk pasteurisation, solid content and thermal treatment. Journal of Food Engineering, 2020, 278, 109922.	2.7	20
58	Formulation of Heat-Induced Whey Protein Gels for Extrusion-Based 3D Printing. Foods, 2021, 10, 8.	1.9	20
59	Flowability characterization of nanopowders. Powder Technology, 2015, 286, 156-163.	2.1	18
60	Calcium balance during direct acidification of milk for Mozzarella cheese production. LWT - Food Science and Technology, 2020, 131, 109677.	2.5	17
61	Printability, stability and sensory properties of protein-enriched 3D-printed lemon mousse for personalised in-between meals. Food Hydrocolloids, 2021, 120, 106943.	5.6	17
62	Structural design of natural plant-based foods to promote nutritional quality. Trends in Food Science and Technology, 2012, 24, 47-59.	7.8	16
63	Infrared Decontamination of Oregano: Effects on <i>Bacillus cereus</i> Spores, Water Activity, Color, and Volatile Compounds. Journal of Food Science, 2014, 79, E2447-55.	1.5	16
64	Estimation of the effective diffusion coefficient of water in skim milk during single-drop drying. Journal of Food Engineering, 2015, 147, 111-119.	2.7	16
65	Skimmed milk structural dynamics during high hydrostatic pressure processing from in situ SAXS. Food Research International, 2021, 147, 110527.	2.9	16
66	Membrane assisted processing of acetone, butanol, and ethanol (ABE) aqueous streams. Chemical Engineering and Processing: Process Intensification, 2021, 166, 108462.	1.8	16
67	Chocolate Swelling during Storage Caused by Fat or Moisture Migration. Journal of Food Science, 2012, 77, E328-34.	1.5	15
68	Flow Properties of Spices Measured with Powder Flow Tester and Ring Shear Tester-XS. International Journal of Food Properties, 2016, 19, 1475-1482.	1.3	14
69	Effect of drying technique and particle size of bilberry press cake on the extraction efficiency of anthocyanins by pressurized carbon dioxide extraction. LWT - Food Science and Technology, 2017, 85, 510-516.	2.5	14
70	Enhancing the retention of -carotene and vitamin C in dried mango using alternative blanching processes. African Journal of Food Science, 2018, 12, 165-174.	0.4	14
71	Effect of residence time in the cooker-stretcher on mozzarella cheese composition, structure and functionality. Journal of Food Engineering, 2021, 309, 110690.	2.7	14
72	Determination of Local Heat-Transfer Coefficients Around a Circular Cylinder Under an Impinging Air Jet. International Journal of Food Properties, 2008, 11, 600-612.	1.3	13

#	Article	IF	CITATIONS
73	Experimental determination of penetration depths of various spice commodities (black pepper seeds,) Tj ETQq1 75-81.	1 0.784314 2.7	4 rgBT /Over 13
74	Reconstitution behavior of cheese powders: Effects of cheese age and dairy ingredients on wettability, dispersibility and total rehydration. Journal of Food Engineering, 2020, 270, 109763.	2.7	13
75	The impact of high effective electrodialytic desalination on acid whey stream at high temperature. International Dairy Journal, 2021, 114, 104921.	1.5	13
76	Gastric Digestion of Milk Proteins in Adult and Elderly: Effect of High-Pressure Processing. Foods, 2021, 10, 786.	1.9	12
77	The effect of acid whey composition on the removal of calcium and lactate during electrodialysis. International Dairy Journal, 2021, 117, 104985.	1.5	12
78	Effect of Pre-Crystallization Process and Solid Particle Addition on Cocoa Butter Crystallization and Resulting Microstructure in Chocolate Model Systems. Procedia Food Science, 2011, 1, 1910-1917.	0.6	11
79	A METHOD TO ASSESS CHANGES IN MECHANICAL PROPERTIES OF CHOCOLATE CONFECTIONERY SYSTEMS SUBJECTED TO MOISTURE AND FAT MIGRATION DURING STORAGE. Journal of Texture Studies, 2012, 43, 106-114.	1.1	11
80	Exploring drying kinetics and morphology of commercial dairy powders. Journal of Food Engineering, 2015, 158, 58-65.	2.7	11
81	Evaluation of a digital colour imaging system for assessing the mixture quality of spice powder mixes by comparison with a salt conductivity method. Powder Technology, 2015, 286, 48-54.	2.1	11
82	Valorization of side-streams from lactose-free milk production by electrodialysis. Innovative Food Science and Emerging Technologies, 2020, 62, 102337.	2.7	11
83	The influence of milk minerals and lactose on heat stability and age-thickening of milk protein concentrate systems. International Dairy Journal, 2021, 118, 105037.	1.5	11
84	Consumers acceptance of composite cassava-maize-wheat breads using baking improvers. African Journal of Food Science, 2014, 8, 390-401.	0.4	9
85	Mathematical modeling of the viscosity of tomato, broccoli and carrot purees under dynamic conditions. Journal of Food Engineering, 2014, 124, 35-42.	2.7	9
86	Bioaccessibility of calcium in freeze-dried yogurt based snacks. LWT - Food Science and Technology, 2020, 129, 109527.	2.5	9
87	Texture and microstructure of heat and acid induced gels from buffalo and cow milk: Effect of thermal treatment and fat content of milk. International Dairy Journal, 2022, 129, 105299.	1.5	9
88	Improving electrodialysis separation efficiency of minerals from acid whey by nanoâ€filtration preâ€processing. International Journal of Dairy Technology, 2022, 75, 820-830.	1.3	9
89	Infant milk formulae processing: Effect of wet-mix total solids and heat treatment temperature on rheological, emulsifying and nutritional properties. Journal of Food Engineering, 2021, 290, 110194.	2.7	8
90	Democratic directionality for transformative food systems research. Nature Food, 2022, 3, 183-186.	6.2	8

#	Article	IF	CITATIONS
91	Temperature effects on calcium binding to caseins. Food Research International, 2022, 154, 110981.	2.9	8
92	Coalescence and agglomeration of individual particles of skim milk during convective drying. Journal of Food Engineering, 2016, 175, 15-23.	2.7	6
93	Calcium binding to lactose, inulin and their constituting monosaccharides and perspective for calcium bioaccessibility. International Dairy Journal, 2021, 118, 105042.	1.5	6
94	The relationship between ultra-small-angle X-ray scattering and viscosity measurements of casein micelles in skim milk concentrates. Food Research International, 2021, 147, 110451.	2.9	6
95	Lime Juice Enhances Calcium Bioaccessibility from Yogurt Snacks Formulated with Whey Minerals and Proteins. Foods, 2020, 9, 1873.	1.9	5
96	Effect of cheese maturation on physical stability, flow properties and microstructure of oil-in-water emulsions stabilised with cheese powders. International Dairy Journal, 2020, 103, 104630.	1.5	4
97	Control of viscosity by addition of calcium chloride and glucono-δ-lactone to heat treated skim milk concentrates produced by reverse osmosis filtration. International Dairy Journal, 2021, 114, 104916.	1.5	4
98	Functional properties of skim milk concentrates produced by reverse osmosis filtration and reconstituted commercial powders. International Dairy Journal, 2022, 126, 105225.	1.5	4
99	Effect of Water Temperature and Time during Heating on Mass Loss and Rheology of Cheese Curds. Foods, 2021, 10, 2881.	1.9	4
100	High shear cooking extrusion to create fibrous mozzarella cheese from renneted and cultured curd. Food Research International, 2022, 157, 111192.	2.9	4
101	Effects of Pulsed Electric Fields on Food Constituents, Microstructure and Sensorial Attributes of Food Products. , 2019, , 27-67.		3
102	Cheese powder as emulsifier in oil-in-water (O/W) emulsions: Effect of powder concentration and added emulsifying salt during cheese powder manufacture. LWT - Food Science and Technology, 2019, 103, 266-270.	2.5	3
103	The Chemical and Cytotoxic Properties of Sambucus nigra Extracts—A Natural Food Colorant. Sustainability, 2021, 13, 12702.	1.6	3
104	Increasing calcium phosphate aqueous solubility and spontaneous supersaturation combining citrate and gluconate with perspectives for functional foods. Food Chemistry, 2022, 374, 131701.	4.2	3
105	Effect of calcium-binding compounds in acid whey on calcium removal during electrodialysis. Food and Bioproducts Processing, 2022, 131, 224-234.	1.8	3
106	Short communication: Effects of electrochemically activated drinking water on bovine milk production and composition, including chlorate, perchlorate, and fatty acid profile. Journal of Dairy Science, 2020, 103, 1208-1214.	1.4	2
107	Impact of pectin and whey minerals solubilized by lime juice on calcium bioaccessibility in yogurt based snacks. Food Hydrocolloids, 2022, 131, 107817.	5.6	2
108	Enthalpy-entropy compensation in calcium binding to acid-base forms of glycine tyrosine dipeptides from hydrolysis of î±-lactalbumin. Food Research International, 2021, 149, 110714.	2.9	1

#	Article	IF	CITATIONS
109	Goat Milk Foodomics. Dietary Supplementation of Sunflower Oil and Rapeseed Oil Modify Milk Amino Acid and Organic Acid Profiles in Dairy Goats. Frontiers in Veterinary Science, 2022, 9, 837229.	0.9	1
110	Processing of Food Powders. , 2008, , 341-368.		1
111	Innovation in food technology. Impact, 2017, 2017, 64-65.	0.0	0
112	Impact of wet-mix total solids content and heat treatment on physicochemical and techno-functional properties of infant milk formula powders. Powder Technology, 2021, 390, 473-481.	2.1	0
113	Innovation in food technology. Impact, 2017, 2017, 64-65.	0.0	0