Richard Born

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9269276/publications.pdf

Version: 2024-02-01

185998 223531 5,721 48 28 46 h-index citations g-index papers 49 49 49 4536 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience, 1995, 15, 3215-3230.	1.7	1,310
2	STRUCTURE AND FUNCTION OF VISUAL AREA MT. Annual Review of Neuroscience, 2005, 28, 157-189.	5.0	866
3	Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain. Nature, 2001, 409, 1040-1042.	13.7	347
4	Segregation of global and local motion processing in primate middle temporal visual area. Nature, 1992, 357, 497-499.	13.7	328
5	How Is a Sensory Map Read Out? Effects of Microstimulation in Visual Area MT on Saccades and Smooth Pursuit Eye Movements. Journal of Neuroscience, 1997, 17, 4312-4330.	1.7	247
6	Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. NeuroImage, 2007, 37, 530-538.	2.1	216
7	Contrast Dependence of Suppressive Influences in Cortical Area MT of Alert Macaque. Journal of Neurophysiology, 2005, 93, 1809-1815.	0.9	179
8	Center-Surround Interactions in the Middle Temporal Visual Area of the Owl Monkey. Journal of Neurophysiology, 2000, 84, 2658-2669.	0.9	168
9	Corticocortical Feedback Contributes to Surround Suppression in V1 of the Alert Primate. Journal of Neuroscience, 2013, 33, 8504-8517.	1.7	161
10	End-Stopping and the Aperture Problem. Neuron, 2003, 39, 671-680.	3.8	158
11	Segregation of Object and Background Motion in Visual Area MT. Neuron, 2000, 26, 725-734.	3.8	157
12	Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys. Nature, 2001, 414, 905-908.	13.7	156
13	Neuroanatomy goes viral!. Frontiers in Neuroanatomy, 2015, 9, 80.	0.9	135
14	Integrating motion and depth via parallel pathways. Nature Neuroscience, 2008, 11, 216-223.	7.1	99
15	Integration of Contour and Terminator Signals in Visual Area MT of Alert Macaque. Journal of Neuroscience, 2004, 24, 3268-3280.	1.7	94
16	Two-Dimensional Substructure of MT Receptive Fields. Neuron, 2001, 30, 781-793.	3.8	92
17	Spatiotemporal Structure of Nonlinear Subunits in Macaque Visual Cortex. Journal of Neuroscience, 2006, 26, 893-907.	1.7	78
18	Disparity Channels in Early Vision. Journal of Neuroscience, 2007, 27, 11820-11831.	1.7	76

#	Article	IF	CITATIONS
19	Segregation of feedforward and feedback projections in mouse visual cortex. Journal of Comparative Neurology, 2011, 519, 3672-3683.	0.9	68
20	Single-unit and 2-deoxyglucose studies of side inhibition in macaque striate cortex Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7071-7075.	3.3	66
21	Two-Dimensional Substructure of Stereo and Motion Interactions in Macaque Visual Cortex. Neuron, 2003, 37, 525-535.	3.8	63
22	The Role of V1 Surround Suppression in MT Motion Integration. Journal of Neurophysiology, 2010, 103, 3123-3138.	0.9	63
23	Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms. Journal of Comparative Neurology, 2015, 523, 1639-1663.	0.9	59
24	Timescales of Sensory- and Decision-Related Activity in the Middle Temporal and Medial Superior Temporal Areas. Journal of Neuroscience, 2010, 30, 14036-14045.	1.7	54
25	Specificity of Projections from Wide-Field and Local Motion-Processing Regions within the Middle Temporal Visual Area of the Owl Monkey. Journal of Neuroscience, 2000, 20, 1157-1169.	1.7	50
26	Corticocortical feedback increases the spatial extent of normalization. Frontiers in Systems Neuroscience, 2014, 8, 105.	1.2	42
27	In vivo microelectrode track reconstruction using magnetic resonance imaging. Journal of Neuroscience Methods, 1998, 80, 215-224.	1.3	39
28	Stereopsis. Current Biology, 2008, 18, R845-R850.	1.8	36
28		1.8	36
	Stereopsis. Current Biology, 2008, 18, R845-R850.		
29	Stereopsis. Current Biology, 2008, 18, R845-R850. A Modality-Specific Feedforward Component of Choice-Related Activity in MT. Neuron, 2015, 87, 208-219. Stimulus-Dependent Modulation of Suppressive Influences in MT. Journal of Neuroscience, 2011, 31,	3.8	36
30	Stereopsis. Current Biology, 2008, 18, R845-R850. A Modality-Specific Feedforward Component of Choice-Related Activity in MT. Neuron, 2015, 87, 208-219. Stimulus-Dependent Modulation of Suppressive Influences in MT. Journal of Neuroscience, 2011, 31, 678-686. Joint tuning for direction of motion and binocular disparity in macaque MT is largely separable.	3.8	36
29 30 31	Stereopsis. Current Biology, 2008, 18, R845-R850. A Modality-Specific Feedforward Component of Choice-Related Activity in MT. Neuron, 2015, 87, 208-219. Stimulus-Dependent Modulation of Suppressive Influences in MT. Journal of Neuroscience, 2011, 31, 678-686. Joint tuning for direction of motion and binocular disparity in macaque MT is largely separable. Journal of Neurophysiology, 2013, 110, 2806-2816. Input-Gain Control Produces Feature-Specific Surround Suppression. Journal of Neuroscience, 2015,	3.8 1.7 0.9	36 32 31
29 30 31 32	Stereopsis. Current Biology, 2008, 18, R845-R850. A Modality-Specific Feedforward Component of Choice-Related Activity in MT. Neuron, 2015, 87, 208-219. Stimulus-Dependent Modulation of Suppressive Influences in MT. Journal of Neuroscience, 2011, 31, 678-686. Joint tuning for direction of motion and binocular disparity in macaque MT is largely separable. Journal of Neurophysiology, 2013, 110, 2806-2816. Input-Gain Control Produces Feature-Specific Surround Suppression. Journal of Neuroscience, 2015, 35, 4973-4982. Contributions of Indirect Pathways to Visual Response Properties in Macaque Middle Temporal Area	3.8 1.7 0.9	36 32 31 31
30 31 32 33	Stereopsis. Current Biology, 2008, 18, R845-R850. A Modality-Specific Feedforward Component of Choice-Related Activity in MT. Neuron, 2015, 87, 208-219. Stimulus-Dependent Modulation of Suppressive Influences in MT. Journal of Neuroscience, 2011, 31, 678-686. Joint tuning for direction of motion and binocular disparity in macaque MT is largely separable. Journal of Neurophysiology, 2013, 110, 2806-2816. Input-Gain Control Produces Feature-Specific Surround Suppression. Journal of Neuroscience, 2015, 35, 4973-4982. Contributions of Indirect Pathways to Visual Response Properties in Macaque Middle Temporal Area MT. Journal of Neuroscience, 2011, 31, 3894-3903.	3.8 1.7 0.9 1.7	36 32 31 31 26

#	Article	IF	CITATIONS
37	Integration of motion cues for the initiation of smooth pursuit eye movements. Progress in Brain Research, 2002, 140, 225-237.	0.9	15
38	Adaptation to Speed in Macaque Middle Temporal and Medial Superior Temporal Areas. Journal of Neuroscience, 2013, 33, 4359-4368.	1.7	15
39	Temporal Evolution of 2-Dimensional Direction Signals Used to Guide Eye Movements. Journal of Neurophysiology, 2005, 95, 284-300.	0.9	14
40	Visual processing: Parallel-er and Parallel-er. Current Biology, 2001, 11, R566-R568.	1.8	12
41	Feature attention for binocular disparity in primate area MT depends on tuning strength. Journal of Neurophysiology, 2015, 113, 1545-1555.	0.9	12
42	Illusions, Delusions, and Your Backwards Bayesian Brain: A Biased Visual Perspective. Brain, Behavior and Evolution, 2020, 95, 272-285.	0.9	6
43	Attention is more than meets the eye. Nature, 2012, 489, 371-372.	13.7	3
44	Banishing "Black/White Thinking― A Trio of Teaching Tricks. ENeuro, 2019, 6, ENEURO.0456-19.2019.	0.9	3
45	Taking Strategies to Task. Neuron, 2004, 42, 185-187.	3.8	2
46	Integration of motion signals over regions of uniform luminance by MT neurons in the alert macaque. Journal of Vision, 2010, 2, 412-412.	0.1	1
47	Special Issue of the Journal of Chemical Neuroanatomy "New methods for studying brain connectivity using viral tracing― Journal of Chemical Neuroanatomy, 2019, 102, 101685.	1.0	0
48	Two-dimensional motion signals in primary visual cortex of alert macaques. Journal of Vision, 2010, 3, 407-407.	0.1	0