List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9269178/publications.pdf Version: 2024-02-01

		12322	24961
317	16,801	69	109
papers	citations	h-index	g-index
327	327	327	15049
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut, 2015, 64, 731-742.	6.1	477
2	Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International Dairy Journal, 2004, 14, 505-515.	1.5	435
3	Vertical mother–neonate transfer of maternal gut bacteria via breastfeeding. Environmental Microbiology, 2014, 16, 2891-2904.	1.8	432
4	The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in CA´te d'Ivoire. American Journal of Clinical Nutrition, 2010, 92, 1406-1415.	2.2	413
5	High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 799-809.	2.7	327
6	Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. British Journal of Nutrition, 2013, 110, 1253-1262.	1.2	296
7	Advances and perspectives in in vitro human gut fermentation modeling. Trends in Biotechnology, 2012, 30, 17-25.	4.9	274
8	New Insights in Gut Microbiota Establishment in Healthy Breast Fed Neonates. PLoS ONE, 2012, 7, e44595.	1.1	259
9	Microbe–microbe interactions in mixed culture food fermentations. Current Opinion in Biotechnology, 2013, 24, 148-154.	3.3	227
10	Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutrition Reviews, 2015, 73, 426-437.	2.6	224
11	The Common Gut Microbe Eubacterium hallii also Contributes to Intestinal Propionate Formation. Frontiers in Microbiology, 2016, 7, 713.	1.5	224
12	Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiology, 2007, 7, 101.	1.3	202
13	3-Hydroxypropionaldehyde: applications and perspectives of biotechnological production. Applied Microbiology and Biotechnology, 2004, 64, 16-27.	1.7	195
14	Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. International Dairy Journal, 2003, 13, 325-336.	1.5	194
15	Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. Journal of Microbiological Methods, 2013, 94, 274-279.	0.7	187
16	Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. International Dairy Journal, 2005, 15, 973-988.	1.5	185
17	Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host–microbe interactions contributing to obesity. Obesity Reviews, 2012, 13, 799-809.	3.1	178
18	Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Systematic and Applied Microbiology, 2006, 29, 145-155.	1.2	171

#	Article	IF	CITATIONS
19	Iron Depletion and Repletion with Ferrous Sulfate or Electrolytic Iron Modifies the Composition and Metabolic Activity of the Gut Microbiota in Rats3. Journal of Nutrition, 2012, 142, 271-277.	1.3	166
20	MICs of Mutacin B-Ny266, Nisin A, Vancomycin, and Oxacillin against Bacterial Pathogens. Antimicrobial Agents and Chemotherapy, 2000, 44, 24-29.	1.4	158
21	Carbohydrates and the human gut microbiota. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 453-460.	1.3	145
22	Inhibition of Listeria innocua in Cheddar Cheese by Addition of Nisin Z in Liposomes or by In Situ Production in Mixed Culture. Applied and Environmental Microbiology, 2002, 68, 3683-3690.	1.4	139
23	Fermentation technologies for the production of probiotics with high viability and functionality. Current Opinion in Biotechnology, 2007, 18, 176-183.	3.3	138
24	The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutrition and Diabetes, 2011, 1, e12-e12.	1.5	137
25	Trophic Interactions of Infant Bifidobacteria and Eubacterium hallii during L-Fucose and Fucosyllactose Degradation. Frontiers in Microbiology, 2017, 8, 95.	1.5	131
26	Stability of the Maternal Gut Microbiota During Late Pregnancy and Early Lactation. Current Microbiology, 2014, 68, 419-427.	1.0	126
27	Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Scientific Reports, 2018, 8, 4318.	1.6	125
28	Production of antibacterial substances by bifidobacterial isolates from infant stool active against Listeria monocytogenes. Journal of Applied Microbiology, 2003, 95, 1058-1069.	1.4	123
29	Anti-infective properties of bacteriocins: an update. Cellular and Molecular Life Sciences, 2013, 70, 2947-2967.	2.4	123
30	Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense. BMC Microbiology, 2016, 16, 248.	1.3	123
31	Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: a randomised controlled study in Kenyan infants. Gut, 2017, 66, 1956-1967.	6.1	123
32	Immobilized Cell Technologies for the Dairy Industry. Critical Reviews in Biotechnology, 1994, 14, 109-134.	5.1	112
33	Mucin Cross-Feeding of Infant Bifidobacteria and Eubacterium hallii. Microbial Ecology, 2018, 75, 228-238.	1.4	112
34	Production of 3-hydroxypropionaldehyde using a two-step process with Lactobacillus reuteri. Applied Microbiology and Biotechnology, 2005, 68, 467-474.	1.7	108
35	Immobilized growing lactic acid bacteria with ?-carrageenan ? locust bean gum gel. Applied Microbiology and Biotechnology, 1988, 29, 11-18.	1.7	107
36	Antibacterial Activities of Nisin Z Encapsulated in Liposomes or Produced In Situ by Mixed Culture during Cheddar Cheese Ripening. Applied and Environmental Microbiology, 2002, 68, 5607-5619.	1.4	107

#	Article	IF	CITATIONS
37	Immobilization of Infant Fecal Microbiota and Utilization in an in vitro Colonic Fermentation Model. Microbial Ecology, 2004, 48, 128-138.	1.4	107
38	Low iron availability in continuous <i>in vitro</i> colonic fermentations induces strong dysbiosis of the child gut microbial consortium and a decrease in main metabolites. FEMS Microbiology Ecology, 2013, 83, 161-175.	1.3	106
39	Glycerol induces reuterin production and decreases Escherichia coli population in an in vitro model of colonic fermentation with immobilized human feces. FEMS Microbiology Ecology, 2008, 63, 56-64.	1.3	103
40	Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites. Microbiome, 2019, 7, 43.	4.9	102
41	Comparison of the Functionality of Exopolysaccharides Produced In Situ or Added as Bioingredients on Yogurt Properties. Journal of Dairy Science, 2005, 88, 4146-4156.	1.4	100
42	Influence of growth conditions on production and activity of mesenterocin 5 by a strain of Leuconostoc mesenteroides. Applied Microbiology and Biotechnology, 1993, 39, 166.	1.7	94
43	In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. International Journal of Food Microbiology, 2009, 133, 225-233.	2.1	93
44	PTPN2 controls differentiation of CD4+ T cells and limits intestinal inflammation and intestinal dysbiosis. Mucosal Immunology, 2015, 8, 918-929.	2.7	93
45	Lactic acid bacteria diversity of African raw and fermented camel milk products reveals a highly competitive, potentially health-threatening predominant microflora. LWT - Food Science and Technology, 2012, 47, 371-379.	2.5	92
46	Effects of iron supplementation on dominant bacterial groups in the gut, faecal SCFA and gut inflammation: a randomised, placebo-controlled intervention trial in South African children. British Journal of Nutrition, 2014, 112, 547-556.	1.2	92
47	Iron Modulates Butyrate Production by a Child Gut Microbiota <i>In Vitro</i> . MBio, 2015, 6, e01453-15.	1.8	92
48	Genomics, evolution, and molecular epidemiology of the Streptococcus bovis / Streptococcus equinus complex (SBSEC). Infection, Genetics and Evolution, 2015, 33, 419-436.	1.0	91
49	Kinetic study of continuous whey permeate fermentation by immobilized Lactobacillus helveticus for lactic acid production. Enzyme and Microbial Technology, 1994, 16, 457-466.	1.6	90
50	Listeria fleischmannii sp. nov., isolated from cheese. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 526-532.	0.8	90
51	Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Scientific Reports, 2016, 6, 36246.	1.6	90
52	Inactivation of Adhesion and Invasion of Food-Borne Listeria monocytogenes by Bacteriocin-Producing Bifidobacterium Strains of Human Origin. Applied and Environmental Microbiology, 2006, 72, 6894-6901.	1.4	89
53	Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part I. multiple factor kinetic analysis. Enzyme and Microbial Technology, 2002, 30, 176-186.	1.6	87
54	Simple method of purification and sequencing of a bacteriocin produced by Pediococcus acidilactici UL5. Journal of Applied Bacteriology, 1994, 77, 682-688.	1.1	86

#	Article	IF	CITATIONS
55	Comparison of different methods for fortifying Cheddar cheese with vitamin D. International Dairy Journal, 2000, 10, 375-382.	1.5	86
56	GABA Production by Human Intestinal Bacteroides spp.: Prevalence, Regulation, and Role in Acid Stress Tolerance. Frontiers in Microbiology, 2021, 12, 656895.	1.5	86
57	Purification, characterization and amino acid sequencing of divergicin M35: a novel class IIa bacteriocin produced by Carnobacterium divergens M35. International Journal of Food Microbiology, 2004, 97, 123-136.	2.1	84
58	Characterization of Low-Molecular-Weight Antiyeast Metabolites Produced by a Food-Protective Lactobacillus-Propionibacterium Coculture. Journal of Food Protection, 2008, 71, 2481-2487.	0.8	84
59	Novel Polyfermentor Intestinal Model (PolyFermS) for Controlled Ecological Studies: Validation and Effect of pH. PLoS ONE, 2013, 8, e77772.	1.1	82
60	Purification and structure of mutacin B-Ny266: a new lantibiotic produced byStreptococcus mutans. FEBS Letters, 1997, 410, 275-279.	1.3	81
61	In vitro inhibition activity of nisin A, nisin Z, pediocin PA-1 and antibiotics against common intestinal bacteria. Letters in Applied Microbiology, 2007, 45, 252-257.	1.0	80
62	Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes. Microbial Biotechnology, 2018, 11, 721-733.	2.0	80
63	Class I/Class IIa bacteriocin cross-resistance phenomenon in Listeria monocytogenes. Food Microbiology, 2007, 24, 718-727.	2.1	79
64	Recent developments in cheese cultures with protective and probiotic functionalities. Dairy Science and Technology, 2008, 88, 421-444.	2.2	79
65	Batch fermentation with entrapped growing cells ofLactobacillus casei. Applied Microbiology and Biotechnology, 1990, 32, 403-408.	1.7	77
66	Early colonization of functional groups of microbes in the infant gut. Environmental Microbiology, 2016, 18, 2246-2258.	1.8	77
67	New three-stage in vitro model for infant colonic fermentation with immobilized fecal microbiota. FEMS Microbiology Ecology, 2006, 57, 324-336.	1.3	76
68	Predictive Formulas for Yield of Cheese from Composition of Milk: A Review. Journal of Dairy Science, 1990, 73, 1365-1394.	1.4	75
69	High nisin Z production by Lactococcus lactis UL719 in whey permeate with aeration. World Journal of Microbiology and Biotechnology, 1998, 14, 887-894.	1.7	74
70	Inulin modifies the bifidobacteria population, fecal lactate concentration, and fecal pH but does not influence iron absorption in women with low iron status. American Journal of Clinical Nutrition, 2012, 96, 325-331.	2.2	74
71	Effect of medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in whey permeate. International Dairy Journal, 2002, 12, 419-426.	1.5	72
72	Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella. Food Microbiology, 2015, 46, 418-427.	2.1	71

#	Article	IF	CITATIONS
73	Increased stress tolerance of Bifidobacterium longum and Lactococcus lactis produced during continuous mixed-strain immobilized-cell fermentation. Journal of Applied Microbiology, 2004, 97, 527-539.	1.4	70
74	Comparison of different application strategies of divergicin M35 for inactivation of Listeria monocytogenes in cold-smoked wild salmon. Food Microbiology, 2009, 26, 783-793.	2.1	69
75	Cryoprotective Effects of Lactitol, Palatinit and Polydextrose® on Cod Surimi Proteins during Frozen Storage. Journal of Food Science, 1990, 55, 356-360.	1.5	68
76	In Vitro Continuous Fermentation Model (PolyFermS) of the Swine Proximal Colon for Simultaneous Testing on the Same Gut Microbiota. PLoS ONE, 2014, 9, e94123.	1.1	67
77	Impact of Nisin Producing Culture and Liposome-encapsulated Nisin on Ripening of Lactobacillus added-Cheddar Cheese. Journal of Dairy Science, 2003, 86, 1895-1909.	1.4	66
78	A rapid turbidometric microplate bioassay for accurate quantification of lactic acid bacteria bacteria bacteriocins. International Journal of Food Microbiology, 2004, 90, 283-293.	2.1	66
79	Concurrent high production of natural folate and vitamin B12 using a co-culture process with Lactobacillus plantarum SM39 and Propionibacterium freudenreichii DF13. Process Biochemistry, 2011, 46, 1063-1070.	1.8	66
80	Identification of staphylococci and dominant lactic acid bacteria in spontaneously fermented Swiss meat products using PCR–RFLP. Food Microbiology, 2012, 29, 157-166.	2.1	64
81	Effects of micronization on viability and thermotolerance of probiotic freeze-dried cultures. International Dairy Journal, 2003, 13, 455-462.	1.5	62
82	Unraveling the Hydroxypropionaldehyde (HPA) System: An Active Antimicrobial Agent against Human Pathogens. Journal of Agricultural and Food Chemistry, 2010, 58, 10315-10322.	2.4	62
83	Histamine receptor 2 is a key influence in immune responses to intestinal histamine-secreting microbes. Journal of Allergy and Clinical Immunology, 2014, 134, 744-746.e3.	1.5	62
84	African fermented dairy products – Overview of predominant technologically important microorganisms focusing on African Streptococcus infantarius variants and potential future applications for enhanced food safety and security. International Journal of Food Microbiology, 2017, 250, 27-36.	2.1	62
85	Screening of a natural biodiversity of lactic and propionic acid bacteria for folate and vitamin B12 production in supplemented whey permeate. International Dairy Journal, 2010, 20, 852-857.	1.5	61
86	Comparative genome analysis of Streptococcus infantarius subsp. infantariusCJ18, an African fermented camel milk isolate with adaptations to dairy environment. BMC Genomics, 2013, 14, 200.	1.2	61
87	Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: a stable-isotope study in Kenyan infants. American Journal of Clinical Nutrition, 2017, 106, 1020-1031.	2.2	61
88	Production of Multiphase Water-Insoluble Microcapsules for Cell Microencapsulation Using an Emulsification/Spray-drying Technology. Journal of Food Science, 2003, 68, 2693-2700.	1.5	59
89	Prevalence of antibiotic resistance in coagulase-negative staphylococci from spontaneously fermented meat products and safety assessment for new starters. International Journal of Food Microbiology, 2012, 159, 74-83.	2.1	59
90	Design and Investigation of PolyFermS In Vitro Continuous Fermentation Models Inoculated with Immobilized Fecal Microbiota Mimicking the Elderly Colon. PLoS ONE, 2015, 10, e0142793.	1.1	59

#	Article	IF	CITATIONS
91	Lactate-utilizing community is associated with gut microbiota dysbiosis in colicky infants. Scientific Reports, 2017, 7, 11176.	1.6	59
92	Bifidobacterium longum ATCC 15707 cell production during free- and immobilized-cell cultures in MRS-whey permeate medium. Applied Microbiology and Biotechnology, 2002, 60, 168-173.	1.7	58
93	Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats. British Journal of Nutrition, 2014, 111, 2135-2145.	1.2	58
94	High-throughput screening assays for antibacterial and antifungal activities of Lactobacillus species. Journal of Microbiological Methods, 2015, 114, 26-29.	0.7	57
95	High Iron-Sequestrating Bifidobacteria Inhibit Enteropathogen Growth and Adhesion to Intestinal Epithelial Cells In vitro. Frontiers in Microbiology, 2016, 7, 1480.	1.5	56
96	Study of the physicochemical and biological stability of pediocin PAâ€I in the upper gastrointestinal tract conditions using a dynamic <i>in vitro</i> model. Journal of Applied Microbiology, 2010, 109, 54-64.	1.4	55
97	Prevalence and comparison of Streptococcus infantarius subsp. infantarius and Streptococcus gallolyticus subsp. macedonicus in raw and fermented dairy products from East and West Africa. International Journal of Food Microbiology, 2013, 167, 186-195.	2.1	55
98	Diffusion of lactose ink-carrageenan/locust bean gum gel beads with or without entrapped growing lactic acid bacteria. Biotechnology and Bioengineering, 1991, 38, 1041-1049.	1.7	54
99	The potential of immobilized cell technology to produce freeze-dried, phage-protected cultures of Lactococcus lactis. Food Research International, 1992, 25, 419-427.	2.9	54
100	Influence of Microfluidization of Milk on Cheddar Cheese Composition, Color, Texture, and Yield. Journal of Dairy Science, 1994, 77, 2870-2879.	1.4	53
101	Comparison of the activity spectra against pathogens of bacterial strains producing a mutacin or a lantibiotic. Canadian Journal of Microbiology, 2001, 47, 322-331.	0.8	53
102	Quantification by real-time PCR of Lactococcus lactis subsp. cremoris in milk fermented by a mixed culture. Applied Microbiology and Biotechnology, 2005, 66, 414-421.	1.7	52
103	Continuous Production of Mixed Lactic Starters Containing Probiotics Using Immobilized Cell Technology. Biotechnology Progress, 2008, 20, 145-150.	1.3	52
104	Cryoprotective Effects of Some Materials on Cod-Surimi Proteins during Frozen Storage. Journal of Food Science, 1990, 55, 1222-1227.	1.5	51
105	Continuous mixed strain mesophilic lactic starter production in supplemented whey permeate medium using immobilized cell technology. , 1997, 56, 502-516.		50
106	Growth and exopolysaccharide production during free and immobilized cell chemostat culture of Lactobacillus rhamnosus RW-9595M. Journal of Applied Microbiology, 2005, 98, 272-284.	1.4	50
107	Methanogen communities in stools of humans of different age and health status and co-occurrence with bacteria. FEMS Microbiology Letters, 2015, 362, fnv092.	0.7	50
108	Comparison of simple neural networks and nonlinear regression models for descriptive modeling of Lactobacillus helveticus growth in pH-controlled batch cultures. Enzyme and Microbial Technology, 2000, 26, 431-445.	1.6	49

#	Article	IF	CITATIONS
109	Alleviation of Intestinal Inflammation by Oral Supplementation With 2-Fucosyllactose in Mice. Frontiers in Microbiology, 2019, 10, 1385.	1.5	49
110	Initial butyrate producers during infant gut microbiota development are endospore formers. Environmental Microbiology, 2020, 22, 3909-3921.	1.8	49
111	Effect of chelatants on gellan gel rheological properties and setting temperature for immobilization of living bifidobacteria. Biotechnology Progress, 1993, 9, 291-297.	1.3	48
112	Effects of mixed starter composition on nisin Z production by Lactococcus lactis subsp. lactis biovar. diacetylactis UL 719 during production and ripening of Gouda cheese. International Journal of Food Microbiology, 2000, 59, 141-156.	2.1	48
113	The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiology Ecology, 2012, 80, 608-623.	1.3	48
114	The strict anaerobic gut microbe <i>Eubacterium hallii</i> transforms the carcinogenic dietary heterocyclic amine 2â€aminoâ€1â€methylâ€6â€phenylimidazo[4,5â€b]pyridine (<scp>PhIP</scp>). Environment Microbiology Reports, 2016, 8, 201-209.	calı.o	48
115	Classification of a moderately oxygen-tolerant isolate from baby faeces as Bifidobacterium thermophilum. BMC Microbiology, 2007, 7, 79.	1.3	47
116	Probiotics tailored to the infant: a window of opportunity. Current Opinion in Biotechnology, 2014, 26, 141-147.	3.3	47
117	Bifidobacteria strains isolated from stools of iron deficient infants can efficiently sequester iron. BMC Microbiology, 2015, 15, 3.	1.3	47
118	Note : Genetic and biochemical characterization of nisin Z produced by Lactococcus lactis ssp. lactis biovar. diacetylactis UL 719. Journal of Applied Microbiology, 1997, 83, 133-138.	1.4	46
119	Effect of aeration and dilution rate on nisin Z production during continuous fermentation with free and immobilized Lactococcus lactis UL719 in supplemented whey permeate. International Dairy Journal, 2001, 11, 943-951.	1.5	46
120	Multiple characterizations of Listeria monocytogenes sensitive and insensitive variants to divergicin M35, a new pediocin-like bacteriocin. Journal of Applied Microbiology, 2006, 100, 29-39.	1.4	46
121	Glycerol Supplementation Enhances L. reuteri's Protective Effect against S. Typhimurium Colonization in a 3-D Model of Colonic Epithelium. PLoS ONE, 2012, 7, e37116.	1.1	45
122	Antimicrobial susceptibility and antibiotic resistance gene transfer analysis of foodborne, clinical, and environmental <i>Listeria</i> spp. isolates including <i>Listeria monocytogenes</i> . MicrobiologyOpen, 2014, 3, 118-127.	1.2	45
123	New method for exopolysaccharide determination in culture broth using stirred ultrafiltration cells. Applied Microbiology and Biotechnology, 2001, 57, 401-406.	1.7	44
124	New in vitro colonic fermentation model for Salmonella infection in the child gut. FEMS Microbiology Ecology, 2009, 67, 198-207.	1.3	44
125	Population dynamics of two antilisterial cheese surface consortia revealed by temporal temperature gradient gel electrophoresis. BMC Microbiology, 2010, 10, 74.	1.3	44
126	Salmonella Adhesion, Invasion and Cellular Immune Responses Are Differentially Affected by Iron Concentrations in a Combined In Vitro Gut Fermentation-Cell Model. PLoS ONE, 2014, 9, e93549.	1.1	44

#	Article	IF	CITATIONS
127	Antibiotic Susceptibility Profile of Bifidobacteria as Affected by Oxgall, Acid, and Hydrogen Peroxide Stress. Antimicrobial Agents and Chemotherapy, 2007, 51, 169-174.	1.4	43
128	Sugar Utilization and Acid Production by Free and Entrapped Cells of <i>Streptococcus salivarius</i> subsp. <i>thermophilus, Lactobacillus delbrueckii</i> subsp. <i>bulgaricus,</i> and <i>Lactococcus lactis</i> subsp. <i>lactis</i> in a Whey Permeate Medium. Applied and Environmental Microbiology, 1989, 55, 185-189.	1.4	43
129	Comparison of the sensitivity of commercial strains and infant isolates of bifidobacteria to antibiotics and bacteriocins. International Dairy Journal, 2004, 14, 1041-1053.	1.5	42
130	Facultative anaerobic halophilic and alkaliphilic bacteria isolated from a natural smear ecosystem inhibit Listeria growth in early ripening stages. International Journal of Food Microbiology, 2011, 147, 26-32.	2.1	42
131	Gut microbial beta-glucuronidase and glycerol/diol dehydratase activity contribute to dietary heterocyclic amine biotransformation. BMC Microbiology, 2019, 19, 99.	1.3	42
132	Immunodot detection of nisin Z in milk and whey using enhanced chemiluminescence. Journal of Applied Microbiology, 1998, 84, 176-184.	1.4	40
133	Unexpected consequences of administering bacteriocinogenic probiotic strains for Salmonella populations, revealed by an in vitro colonic model of the child gut. Microbiology (United Kingdom), 2010, 156, 3342-3353.	0.7	40
134	lron-containing micronutrient powders modify the effect of oral antibiotics on the infant gut microbiome and increase post-antibiotic diarrhoea risk: a controlled study in Kenya. Gut, 2019, 68, 645-653.	6.1	40
135	Batch fermentations with a mixed culture of lactic acid bacteria immobilized separately in ?-carrageenan locust bean gum gel beads. Applied Microbiology and Biotechnology, 1990, 32, 662-668.	1.7	39
136	Counterdiffusion of lactose and lactic acid in κ-carrageenan/locust bean gum gel beads with or without entrapped lactic acid bacteria. Enzyme and Microbial Technology, 1992, 14, 715-724.	1.6	39
137	Exopolysaccharide production during batch cultures with free and immobilized Lactobacillus rhamnosus RW-9595M. Journal of Applied Microbiology, 2003, 95, 1049-1057.	1.4	39
138	Continuous lactic acid production in whey permeate/yeast extract medium with immobilized Lactobacillus helveticus in a two-stage process: Model and experiments. Enzyme and Microbial Technology, 2006, 38, 324-337.	1.6	39
139	Monitoring horizontal antibiotic resistance gene transfer in a colonic fermentation model. FEMS Microbiology Ecology, 2011, 78, 210-219.	1.3	39
140	Purification, properties and characterization of a highâ€molecularâ€mass bâ€galactosidase isoenzyme from <i>Thermusaquaticus</i> YTâ€I. Biotechnology and Applied Biochemistry, 1997, 25, 29-41.	1.4	39
141	Protection of probiotic microorganisms by microencapsulation. Chemical Industry and Chemical Engineering Quarterly, 2007, 13, 169-174.	0.4	39
142	Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part II: kinetic modeling and model validation. Enzyme and Microbial Technology, 2002, 30, 187-194.	1.6	38
143	Protective effect of probiotics on Salmonella infectivity assessed with combined in vitro gut fermentation-cellular models. BMC Microbiology, 2011, 11, 264.	1.3	38
144	Synergistic effects of Bifidobacterium thermophilum RBL67 and selected prebiotics on inhibition of Salmonella colonization in the swine proximal colon PolyFermS model. Gut Pathogens, 2014, 6, 44.	1.6	38

#	Article	IF	CITATIONS
145	Effect of the lower ligand precursors on vitamin B12 production by food-grade Propionibacteria. LWT - Food Science and Technology, 2016, 72, 117-124.	2.5	38
146	Shear stress effects on growth and activity of Lactobacillus delbrueckii subsp. bulgaricus. Journal of Biotechnology, 1993, 29, 157-175.	1.9	37
147	The effects on vegetative cells and spores of three bacteriocins from lactic acid bacteria. Food Microbiology, 1999, 16, 105-114.	2.1	37
148	High nisin-Z production during repeated-cycle batch cultures in supplemented whey permeate using immobilized Lactococcus lactis UL719. International Dairy Journal, 2001, 11, 953-960.	1.5	37
149	Gut Microbial Clycerol Metabolism as an Endogenous Acrolein Source. MBio, 2018, 9, .	1.8	37
150	Reuterin Demonstrates Potent Antimicrobial Activity Against a Broad Panel of Human and Poultry Meat Campylobacter spp. Isolates. Microorganisms, 2020, 8, 78.	1.6	37
151	Comparative study of a new quantitative real-time PCR targeting the xylulose-5-phosphate/fructose-6-phosphate phosphoketolase bifidobacterial gene (xfp) in faecal samples with two fluorescence in situ hybridization methods. Journal of Applied Microbiology, 2010, 108. 181-193.	1.4	36
152	Quantitative determination of the spatial distribution of pure- and mixed-strain immobilized cells in gel beads by immunofluorescence. Applied Microbiology and Biotechnology, 2002, 59, 297-302.	1.7	35
153	Analysis of lactic acid bacteria communities and their seasonal variations in a spontaneously fermented dairy product (Malian fènè) by applying a cultivation/genotype-based binary model. International Dairy Journal, 2013, 29, 28-35.	1.5	35
154	Tn6198, a novel transposon containing the trimethoprim resistance gene dfrG embedded into a Tn916 element in Listeria monocytogenes. Journal of Antimicrobial Chemotherapy, 2013, 68, 986-991.	1.3	35
155	Integrated multi-scale strategies to investigate nutritional compounds and their effect on the gut microbiota. Current Opinion in Biotechnology, 2015, 32, 149-155.	3.3	35
156	Set up of a new <i>in vitro</i> model to study dietary fructans fermentation in formula-fed babies. British Journal of Nutrition, 2010, 103, 403-411.	1.2	34
157	Effect of dietary nucleosides and yeast extracts on composition and metabolic activity of infant gut microbiota in PolyFermS colonic fermentation models. FEMS Microbiology Ecology, 2017, 93, .	1.3	34
158	Cryopreservation of artificial gut microbiota produced with <i>inÂvitro</i> fermentation technology. Microbial Biotechnology, 2018, 11, 163-175.	2.0	34
159	Identification of new enzyme activities of several strains of Thermus species. Applied Microbiology and Biotechnology, 1995, 44, 81-87.	1.7	33
160	Production of a nisin Z/pediocin mixture by pH-controlled mixed-strain batch cultures in supplemented whey permeate. Journal of Applied Microbiology, 1999, 86, 399-406.	1.4	33
161	Production and utilization of polyclonal antibodies against nisin in an ELISA and for immuno-location of nisin in producing and sensitive bacterial strains. Journal of Applied Microbiology, 1999, 87, 500-510.	1.4	33
162	Bifidobacterium thermophilum RBL67 impacts on growth and virulence gene expression of Salmonella enterica subsp. enterica serovar Typhimurium. BMC Microbiology, 2016, 16, 46.	1.3	33

#	Article	IF	CITATIONS
163	Microbial dynamics of co- and separately entrapped mixed cultures of mesophilic lactic acid bacteria during the continuous prefermentation of milk. Enzyme and Microbial Technology, 1997, 20, 381-388.	1.6	32
164	Prediction of moisture in cheese of commercial production using neural networks. International Dairy Journal, 2005, 15, 1156-1174.	1.5	32
165	Phylogenetic, epidemiological and functional analyses of the Streptococcus bovis/Streptococcus equinus complex through an overarching MLST scheme. BMC Microbiology, 2016, 16, 117.	1.3	32
166	Oligosaccharides synthesis by free and immobilized ?-galactosidases from Thermus aquaticus YT-1. Biotechnology Letters, 1995, 17, 1077-1080.	1.1	31
167	Pediocin 5 production and plasmid stability during continuous free and immobilized cell cultures of Pediococcus acidilactici UL5. Journal of Applied Bacteriology, 1996, 80, 635-644.	1.1	31
168	Characterization of diacetin B, a bacteriocin fromLactococcus lactissubsp.lactisbv.diacetylactisUL720. Canadian Journal of Microbiology, 1995, 41, 832-841.	0.8	30
169	Novel Streptococcus infantarius subsp. infantarius variants harboring lactose metabolism genes homologous to Streptococcus thermophilus. Food Microbiology, 2012, 31, 33-42.	2.1	30
170	Decontamination of Minimally-Processed Fresh Lettuce Using Reuterin Produced by Lactobacillus reuteri. Frontiers in Microbiology, 2018, 9, 1421.	1.5	30
171	Comparative detection of bacterial adhesion to Caco-2 cells with ELISA, radioactivity and plate count methods. Journal of Microbiological Methods, 2004, 59, 211-221.	0.7	29
172	Comparative effects of exopolysaccharides from lactic acid bacteria and fructo-oligosaccharides on infant gut microbiota tested in an in vitro colonic model with immobilized cells. FEMS Microbiology Ecology, 2006, 57, 226-238.	1.3	29
173	Exopolysaccharides from co-cultures of Weissella confusa 11GU-1 and Propionibacterium freudenreichii JS15 act synergistically on wheat dough and bread texture. International Journal of Food Microbiology, 2015, 214, 91-101.	2.1	29
174	Gut Microbial Transformation of the Dietary Imidazoquinoxaline Mutagen MelQx Reduces Its Cytotoxic and Mutagenic Potency. Toxicological Sciences, 2017, 159, 266-276.	1.4	29
175	Effects of Initial Moisture Content and Storage Relative Humidity on Textural Changes of Layer Cakes During Storage. Journal of Food Science, 1987, 52, 1604-1610.	1.5	28
176	Production and characterization of anti-nisin Z monoclonal antibodies: suitability for distinguishing active from inactive forms through a competitive enzyme immunoassay. Applied Microbiology and Biotechnology, 2001, 56, 114-119.	1.7	28
177	Effect of pH on the morphology OFLactobacillus helveticusin freeâ€cell batch and immobilizedâ€cell continuous fermentation. Food Biotechnology, 1993, 7, 235-251.	0.6	27
178	Rapid purification of nisin Z using specific monoclonal antibody-coated magnetic beads. International Dairy Journal, 2000, 10, 627-633.	1.5	27
179	Combined Effects of Temperature and Medium Composition on Exopolysaccharide Production by Lactobacillus rhamnosus RW-9595M in a Whey Permeate Based Medium. Biotechnology Progress, 2002, 18, 167-173.	1.3	27
180	Detection of the pediocin gene pedA in strains from human faeces by real-time PCR and characterization of Pediococcus acidilactici UVA1. BMC Biotechnology, 2007, 7, 55.	1.7	27

#	Article	IF	CITATIONS
181	<i>In vitro</i> inhibition activity of different bacteriocin-producing <i>Escherichia coli</i> against <i>Salmonella</i> strains isolated from clinical cases. Letters in Applied Microbiology, 2009, 49, 31-38.	1.0	27
182	1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production. Microbial Cell Factories, 2011, 10, 61.	1.9	27
183	Quantification of Exopolysaccharide, Lactic Acid, and Lactose Concentrations in Culture Broth by Near-Infrared Spectroscopy. Journal of Agricultural and Food Chemistry, 2002, 50, 1774-1779.	2.4	26
184	Osmotic stress induced by salt increases cell yield, autolytic activity, and survival of lyophilization of Lactobacillus delbrueckii subsp. lactis. International Journal of Food Microbiology, 2007, 117, 36-42.	2.1	26
185	Determination of Optimal Level of Lactitol for Surimi. Journal of Food Science, 1991, 56, 285-290.	1.5	25
186	Continuous fermentation of a supplemented whey permeate medium with immobilized Streptococcus salivarius subsp. thermophilus. International Dairy Journal, 1992, 2, 1-15.	1.5	25
187	Reduction of Yeast Extract Supplementation in Lactic Acid Fermentation of Whey Permeate by Immobllized Cell Technology. Journal of Dairy Science, 1994, 77, 2494-2508.	1.4	25
188	Isolation of <i>lactococcus lactis</i> strains producing inhibitory activity against <i>listeria</i> . Food Biotechnology, 1997, 11, 129-146.	0.6	25
189	Modeling of pH and Acidity for Industrial Cheese Production. Journal of Dairy Science, 2000, 83, 2393-2409.	1.4	25
190	Electrical conductivity as a tool for analysing fermentation processes for production of cheese starters. International Dairy Journal, 2000, 10, 391-399.	1.5	24
191	Recent Development of Prebiotic Research—Statement from an Expert Workshop. Nutrients, 2017, 9, 1376.	1.7	24
192	Lactate Metabolism Is Strongly Modulated by Fecal Inoculum, pH, and Retention Time in PolyFermS Continuous Colonic Fermentation Models Mimicking Young Infant Proximal Colon. MSystems, 2019, 4,	1.7	24
193	Optimization of dynamic loop mixer operating conditions for production of O/W emulsion for cell microencapsulation. Dairy Science and Technology, 2003, 83, 237-250.	0.9	24
194	Effect of medium and temperature of storage on viability of lactic acid bacteria immobilized in κ-carrageenan-locust bean gum gel beads. Biotechnology Letters, 1991, 5, 307-312.	0.5	23
195	Use of an immobilized cell bioreactor for the continuous inoculation of milk in fresh cheese manufacturing. Journal of Industrial Microbiology and Biotechnology, 1997, 18, 56-61.	1.4	23
196	Development of a real-time RT-PCR method for enumeration of viable Bifidobacterium longum cells in different morphologies. Food Microbiology, 2010, 27, 236-242.	2.1	23
197	New method for selection of hydrogen peroxide adapted bifidobacteria cells using continuous culture and immobilized cell technology. Microbial Cell Factories, 2010, 9, 60.	1.9	23
198	Immobilization of ?-galactosidases from Thermus aquaticus YT-1 for oligosaccharides synthesis. Biotechnology Letters, 1995, 9, 601-606.	0.5	22

#	Article	IF	CITATIONS
199	Milk fermentation by functional mixed culture producing nisin Z and exopolysaccharides in a fresh cheese model. International Dairy Journal, 2007, 17, 123-132.	1.5	22
200	Production of recombinant bacteriocin divercin V41 by high cell density Escherichia coli batch and fed-batch cultures. Applied Microbiology and Biotechnology, 2007, 77, 525-531.	1.7	22
201	Inâ€home fortification with 2.5 mg iron as <scp>NaFeEDTA</scp> does not reduce anaemia but increases weight gain: a randomised controlled trial in <scp>K</scp> enyan infants. Maternal and Child Nutrition, 2015, 11, 151-162.	1.4	22
202	pDB2011, a 7.6kb multidrug resistance plasmid from Listeria innocua replicating in Gram-positive and Gram-negative hosts. Plasmid, 2013, 70, 284-287.	0.4	21
203	Loss of PTPN22 abrogates the beneficial effect of cohousing-mediated fecal microbiota transfer in murine colitis. Mucosal Immunology, 2019, 12, 1336-1347.	2.7	21
204	A novel multiplex PCR/RFLP assay for the identification of Streptococcus bovis/Streptococcus equinus complex members from dairy microbial communities based on the 16S rRNA gene. FEMS Microbiology Letters, 2012, 326, 144-150.	0.7	20
205	The extracellular proteome of two Bifidobacterium species reveals different adaptation strategies to low iron conditions. BMC Genomics, 2017, 18, 41.	1.2	20
206	Goals in Nutrition Science 2020-2025. Frontiers in Nutrition, 2021, 7, 606378.	1.6	20
207	Effect of lactic fermentation on the rheological properties of ?-carrageenan/locust bean gum mixed gels inoculated withS. thermophilus. Biotechnology and Bioengineering, 1989, 34, 1403-1408.	1.7	19
208	Title is missing!. Biotechnology Letters, 1997, 11, 527-531.	0.5	19
209	Immobilised Cell Technologies for the Dairy Industry. Focus on Biotechnology, 2005, , 295-319.	0.4	19
210	Growth of Carnobacterium divergens M35 and production of Divergicin M35 in snow crab by-product, a natural-grade medium. LWT - Food Science and Technology, 2009, 42, 624-632.	2.5	19
211	Microbial composition of defect smear – A problem evolving during foil-prepacked storage of red-smear cheeses. International Dairy Journal, 2012, 27, 77-85.	1.5	19
212	Vagococcus teuberi sp. nov., isolated from the Malian artisanal sour milk fènè. Systematic and Applied Microbiology, 2018, 41, 65-72.	1.2	19
213	Stepwise Development of an in vitro Continuous Fermentation Model for the Murine Caecal Microbiota. Frontiers in Microbiology, 2019, 10, 1166.	1.5	19
214	Long-Term Mechanical and Biological Stability of an Immobilized Cell Reactor for Continuous Mixed-Strain Mesophilic Lactic Starter Production in Whey Permeate. Biotechnology Progress, 1999, 15, 646-654.	1.3	18
215	Isolation and Comparative Genomic Analysis of Reuterin-Producing Lactobacillus reuteri From the Chicken Gastrointestinal Tract. Frontiers in Microbiology, 2020, 11, 1166.	1.5	18
216	Direct measurement of pH profiles in gel beads immobilizing Lactobacillus helveticus using a pH sensitive microelectrode. Biotechnology Letters, 1994, 8, 551-556.	0.5	17

CHRISTOPHE LACROIX

#	Article	IF	CITATIONS
217	Process Performance of Continuous Inoculation and Acidification of Milk with Immobilized Lactic Acid Bacteria. Journal of Dairy Science, 1995, 78, 1407-1420.	1.4	17
218	Effects of strains and growth conditions on autolytic activity and survival to freezing and lyophilization of Lactobacillus delbrueckii ssp. lactis isolated from cheese. International Dairy Journal, 2008, 18, 187-196.	1.5	17
219	Bisulfite as scavenger for enhanced biotechnological production of 3-hydroxypropionaldehyde by Lactobacillus reuteri. Biochemical Engineering Journal, 2013, 79, 239-245.	1.8	17
220	Growth of Listeria monocytogenes in milk and its control by pediocin 5 produced by Pediococcus acidilactici UL5. International Dairy Journal, 1994, 4, 429-443.	1.5	16
221	The potential of reuterin produced by Lactobacillus reuteri as a broad spectrum preservative in food. , 2011, , 129-160.		16
222	Characterization of the Cultivable Microbiota in Fresh and Stored Mature Human Breast Milk. Frontiers in Microbiology, 2019, 10, 2666.	1.5	16
223	Detection of Biogenic Amines and Tyramine-Producing Bacteria in Fermented Sausages from Switzerland. Journal of Food Protection, 2020, 83, 1512-1519.	0.8	16
224	Characterization of nisin-resistant variants of Pediococcus acidilactici UL5, a producer of pediocin. Journal of Applied Microbiology, 1998, 85, 387-397.	1.4	15
225	Pediocin PA-1 production during repeated-cycle batch culture of immobilized Pediococcus acidilactici UL5 cells. Journal of Bioscience and Bioengineering, 2008, 105, 513-517.	1.1	15
226	Improved tolerance to bile salts of aggregated Bifidobacterium longum produced during continuous culture with immobilized cells. Bioresource Technology, 2011, 102, 4559-4567.	4.8	15
227	Characterization of the microflora of industrial Mexican cheeses produced without added chemical preservatives. LWT - Food Science and Technology, 2013, 53, 314-320.	2.5	15
228	Investigating the association between African spontaneously fermented dairy products, faecal carriage of Streptococcus infantarius subsp. infantarius and colorectal adenocarcinoma in Kenya. Acta Tropica, 2018, 178, 10-18.	0.9	15
229	Colonization ofCutibacterium avidumduring infant gut microbiota establishment. FEMS Microbiology Ecology, 2019, 95, .	1.3	15
230	Protein tyrosine phosphatase non-receptor type 22 modulates colitis in a microbiota-dependent manner. Journal of Clinical Investigation, 2019, 129, 2527-2541.	3.9	15
231	Simple Method For Freezing Time Calculations For Brick and Cylindrical Shaped Food Products. Canadian Institute of Food Science and Technology Journal, 1987, 20, 342-349.	0.3	14
232	Statistical Data Validation Methods for Large Cheese Plant Database. Journal of Dairy Science, 2002, 85, 2081-2097.	1.4	14
233	PCR and real-time PCR primers developed for detection and identification of Bifidobacterium thermophilum in faeces. BMC Microbiology, 2008, 8, 179.	1.3	14
234	Construction and characterization of Enterococcus faecalis CG110/gfp/pRE25*, a tool for monitoring horizontal gene transfer in complex microbial ecosystems. FEMS Microbiology Letters, 2010, 313, 111-119.	0.7	14

#	Article	IF	CITATIONS
235	Development of a reversible binding process for in situ removal of 3-hydroxypropionaldehyde during biotechnological conversion of glycerol. Biochemical Engineering Journal, 2011, 55, 176-184.	1.8	14
236	Stability and Inhibitory Activity of Pediocin PA-1 Against Listeria sp. in Simulated Physiological Conditions of the Human Terminal Ileum. Probiotics and Antimicrobial Proteins, 2012, 4, 250-258.	1.9	14
237	Fermentation technologies for the production of exopolysaccharide-synthesizing Lactobacillus rhamnosus concentrated cultures. Electronic Journal of Biotechnology, 2007, 10, 0-0.	1.2	14
238	Simple Method for Freezing Time Calculations for Infinite Flat Slabs, Infinite Cylinders and Spheres. Canadian Institute of Food Science and Technology Journal, 1987, 20, 252-259.	0.3	13
239	Further Considerations in Formulas for Predicting Cheese Yield from the Composition of Milk. Journal of Dairy Science, 1993, 76, 914-920.	1.4	13
240	Complete Genome Sequence of the African Dairy Isolate Streptococcus infantarius subsp. infantarius Strain CJ18. Journal of Bacteriology, 2012, 194, 2105-2106.	1.0	13
241	Fast screening of Bifidobacterium longum sublethal stress conditions in a novel two-stage continuous culture strategy. Beneficial Microbes, 2013, 4, 167-178.	1.0	13
242	Effect of Bifidobacterium thermophilum RBL67 and fructo-oligosaccharides on the gut microbiota in G¶ttingen minipigs. British Journal of Nutrition, 2015, 114, 746-755.	1.2	13
243	Clostridium difficile colonization and antibiotics response in PolyFermS continuous model mimicking elderly intestinal fermentation. Gut Pathogens, 2016, 8, 63.	1.6	13
244	Planktonic and Sessile Artificial Colonic Microbiota Harbor Distinct Composition and Reestablish Differently upon Frozen and Freeze-Dried Long-Term Storage. MSystems, 2020, 5, .	1.7	13
245	Bistable auto-aggregation phenotype in Lactiplantibacillus plantarum emerges after cultivation in in vitro colonic microbiota. BMC Microbiology, 2021, 21, 268.	1.3	13
246	Continuous fermentation of a supplemented milk with immobilized Bifidobacterium infantis. Biotechnology Letters, 1994, 8, 45.	0.5	12
247	Complete Genome Sequence of the Probiotic Bifidobacterium thermophilum Strain RBL67. Genome Announcements, 2013, 1, .	0.8	12
248	In vitro Study of Lactobacillus paracasei CNCM I-1518 in Healthy and Clostridioides difficile Colonized Elderly Gut Microbiota. Frontiers in Nutrition, 2019, 6, 184.	1.6	12
249	Cumulative effect of yeast extract and fructooligosaccharide supplementation on composition and metabolic activity of elderly colonic microbiota in vitro. Journal of Functional Foods, 2019, 52, 43-53.	1.6	12
250	Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation. , 2011, , .		12
251	Regional and seasonal variations of nitrogen fractions in commingled milk. International Dairy Journal, 1996, 6, 947-961.	1.5	11
252	Establishment of bacteriophages in an immobilized cells system used for continuous inoculation of lactococci. International Dairy Journal, 1999, 9, 437-445.	1.5	11

#	Article	IF	CITATIONS
253	Impact of modeling parameters on the prediction of cheese moisture using neural networks. Computers and Chemical Engineering, 2003, 27, 631-646.	2.0	11
254	In vitro models of gut digestion across childhood: current developments, challenges and future trends. Biotechnology Advances, 2022, 54, 107796.	6.0	11
255	RHEOLOGY OF PURE AND MIXED KAPPA-CARRAGEENAN GELS IN LACTIC ACID FERMENTATION CONDITIONS. Journal of Texture Studies, 1997, 28, 47-70.	1.1	10
256	Effect of Inoculum Composition and Low KCl Supplementation on the Biological and Rheological Stability of an Immobilized-Cell System for Mixed Mesophilic Lactic Starter Production. Biotechnology Progress, 2001, 17, 1071-1078.	1.3	10
257	Complete and Assembled Genome Sequence of Bifidobacterium kashiwanohense PV20-2, Isolated from the Feces of an Anemic Kenyan Infant. Genome Announcements, 2015, 3, .	0.8	10
258	Intestinal inflammation alters mucosal carbohydrate foraging and monosaccharide incorporation into microbial glycans. Cellular Microbiology, 2021, 23, e13269.	1.1	10
259	Impact of manipulation of glycerol/diol dehydratase activity on intestinal microbiota ecology and metabolism. Environmental Microbiology, 2021, 23, 1765-1779.	1.8	10
260	In vitro Colon Fermentation of Soluble Arabinoxylan Is Modified Through Milling and Extrusion. Frontiers in Nutrition, 2021, 8, 707763.	1.6	10
261	In vitro Modeling of Chicken Cecal Microbiota Ecology and Metabolism Using the PolyFermS Platform. Frontiers in Microbiology, 2021, 12, 780092.	1.5	10
262	Title is missing!. Biotechnology Letters, 1997, 11, 251-256.	0.5	9
263	Simultaneous Immunofluorescent Detection of Coentrapped Cells in Gel Beads. Applied and Environmental Microbiology, 2000, 66, 2216-2219.	1.4	9
264	Co-cultivation of a bacteriocin-producing mixed culture ofBifidobacterium thermophilumRBL67 andPediococcus acidilacticiUVA1 isolated from baby faeces. Journal of Applied Microbiology, 2009, 107, 36-46.	1.4	9
265	Development of silk fibroin-based beads for immobilized cell fermentations. Journal of Microencapsulation, 2010, 27, 1-9.	1.2	9
266	Transcriptome analysis and physiology of Bifidobacterium longum NCC2705 cells under continuous culture conditions. Beneficial Microbes, 2012, 3, 261-272.	1.0	9
267	Bifidobacterium pseudolongum Strain PV8-2, Isolated from a Stool Sample of an Anemic Kenyan Infant. Genome Announcements, 2015, 3, .	0.8	9
268	Effect of packaging materials, environmental factors and rRNA transcriptional activity of surface microflora on red-smear cheese defect development. International Dairy Journal, 2015, 41, 50-57.	1.5	9
269	Complete Genome Sequences of Lactobacillus curvatus KG6, <i>L. curvatus</i> MRS6, and Lactobacillus sakei FAM18311, Isolated from Fermented Meat Products. Genome Announcements, 2017, 5,	0.8	9
270	<i>In Vitro</i> Gut Modeling as a Tool for Adaptive Evolutionary Engineering of <i>Lactiplantibacillus plantarum</i> . MSystems, 2021, 6, .	1.7	9

#	Article	IF	CITATIONS
271	Purified exopolysaccharides from Weissella confusa 11GU-1 and Propionibacterium freudenreichii JS15 act synergistically on bread structure to prevent staling. LWT - Food Science and Technology, 2020, 127, 109375.	2.5	9
272	Influence du glycérol sur la texture et la stabilité des émulsions cuites à base de viande de type frankfurters. Canadian Institute of Food Science and Technology Journal, 1985, 18, 34-43.	0.3	8
273	Modelling the acidifying activity profile of Lactobacillus bulgaricus cultures. Applied Microbiology and Biotechnology, 1994, 41, 192-196.	1.7	8
274	Enterococci and pseudomonads as quality indicators in industrial production and storage of mozzarella cheese from raw cow milk. International Dairy Journal, 2018, 82, 28-34.	1.5	8
275	Cutibacterium avidum is phylogenetically diverse with a subpopulation being adapted to the infant gut. Systematic and Applied Microbiology, 2019, 42, 506-516.	1.2	8
276	Effet des agents humectants sur 1'Aw et les propriétés rhéologiques du yogourt. Canadian Institute of Food Science and Technology Journal, 1988, 21, 511-519.	0.3	7
277	New macrofossil evidence for early postglacial migration of jack pine (<i>Pinus banksiana</i>) in the James Bay region of northwestern Quebec. Ecoscience, 2011, 18, 273-278.	0.6	7
278	Ecology of Probiotics and Enteric Protection. , 2011, , 65-85.		7
279	Effet de l'Aw sur la survie de L. Bulgaricus et S. thermophilus et le développement d'acidité dans le yogourt conservé au froid. Canadian Institute of Food Science and Technology Journal, 1988, 21, 501-510.	0.3	6
280	Effect of Various Humectants and Aw on Proteolysis, Yeast and Mold Growth and Shelf-Life During Cold Storage of Yogurt. Canadian Institute of Food Science and Technology Journal, 1990, 23, 101-108.	0.3	6
281	Enhancement of Functional Characteristics of Mixed Lactic Culture Producing Nisin Z and Exopolysaccharides During Continuous Prefermentation of Milk with Immobilized Cells. Journal of Dairy Science, 2007, 90, 5361-5373.	1.4	6
282	Screening for mycotoxins in the inoculum used for production of attiéké, a traditional Ivorian cassava product. LWT - Food Science and Technology, 2010, 43, 1160-1163.	2.5	6
283	Role of Dietary Micronutrients on Gut Microbial Dysbiosis and Modulation in Inflammatory Bowel Disease. Molecular Nutrition and Food Research, 2021, 65, 1901271.	1.5	6
284	Effect of Dilution Rate on Bacteriophage Development in an Immobilized Cell System Used for Continuous Inoculation of Lactococci in Milk. Journal of Dairy Science, 1996, 79, 767-774.	1.4	5
285	Genetic and phenotypic diversity of Bifidobacterium thermacidophilum fecal isolates from newborns. Canadian Journal of Microbiology, 2007, 53, 1348-1359.	0.8	5
286	Antifungal lactic acid bacteria and propionibacteria for food biopreservation. , 2011, , 27-62.		5
287	Enhancing oxidative stress resistance in Bifidobacterium thermophilum using a novel overexpression vector and transformation protocol. Plasmid, 2017, 92, 43-48.	0.4	5
288	Detection of pediocin PA-1 in food matrices using specific polyclonal antibodies. Journal of Microbiological Methods, 2007, 71, 175-177.	0.7	4

#	Article	IF	CITATIONS
289	Évaluation de diverses méthodes de prédiction de l'aw des émulsions cuites de type frankfurter en fonction des teneurs en sel, sucre et glycérol. Canadian Institute of Food Science and Technology Journal, 1985, 18, 44-52.	0.3	3
290	Digoxigenin-labeled probe for rapid identification of nisinogenicLactococcus lactisstrains. FEMS Microbiology Letters, 1999, 171, 43-48.	0.7	3
291	Comparative effects of exopolysaccharides from lactic acid bacteria and fructo-oligosaccharides on infant gut microbiota tested in an in vitro colonic model with immobilized cells. FEMS Microbiology Ecology, 2006, 57, 337-339.	1.3	3
292	Biotechnological production of 3-hydroxypropionaldehyde combined with an in situ product removal process to purify this compound. Journal of Biotechnology, 2007, 131, S192-S193.	1.9	3
293	Combination of in vitro intestinal continuous fermentation and intestinal cell models to investigate Salmonella and probiotics interactions in infected gut microbiota. Journal of Biotechnology, 2010, 150, 316-317.	1.9	3
294	An approach to select <i>Lactobacillus</i> isolates as protective cultures for food fermentations. Journal of Food Safety, 2018, 38, e12483.	1.1	3
295	Optimisation des conditions d'opération d'un four à vide pour la détermination de l'humidité du fromage par une méthode combinée de lyophilisation-séchage au four à vide. Canadian Institute of Food Science and Technology Journal, 1989, 22, 276-283.	0.3	2
296	Microbiological stability of an immobilized cell bioreactor with mixed lactic acid bacteria during continuous fermentation of milk. Progress in Biotechnology, 1996, , 600-607.	0.2	2
297	Production of High-Quality Probiotics Using Novel Fermentation and Stabilization Technologies. , 2010, , 361-388.		2
298	Effet des combinaisons de sel, lactose et glycérol sur l'activité de l'eau (Aw) des fromages fondus Ã tartiner. Canadian Institute of Food Science and Technology Journal, 1991, 24, 233-238.	0.3	1
299	New three-stage in vitro model for infant colonic fermentation with immobilized fecal microbiota. FEMS Microbiology Ecology, 2006, 57, 340-342.	1.3	1
300	Development of a rapid screening protocol for selection of strains resistant to spray drying and storage in dry powder. Beneficial Microbes, 2010, 1, 165-174.	1.0	1
301	Fructose impacts on gut microbiota and obesity – response to H. C. Stevens. Obesity Reviews, 2012, 13, 1184-1185.	3.1	1
302	Ampicillin resistance and extended spectrum β-lactamases in Enterobacteriaceae isolated from raw and spontaneously fermented camel milk. African Journal of Microbiology Research, 2012, 6, .	0.4	1
303	Identification of Valerate as Carrying Capacity Modulator by Analyzing Lactiplantibacillus plantarum Colonization of Colonic Microbiota in vitro. Frontiers in Microbiology, 2022, 13, .	1.5	1
304	Evolution microbiologique en fonction de l'aw de saucisses de type frankfurters emballes sous vide. Canadian Institute of Food Science and Technology Journal, 1983, 16, xvi.	0.3	0
305	The Effect of Storage Relative Humidity and Initial Moisture Content on the Staling and Associated Textural Changes of Layer Cakes. Canadian Institute of Food Science and Technology Journal, 1986, 19, xliv.	0.3	0
306	Méthode Simple Permettant D'Estimer Les Temps De Congélation De Produits Ayant Des Formes Simples. Canadian Institute of Food Science and Technology Journal, 1986, 19, xlvi.	0.3	0

#	Article	IF	CITATIONS
307	Combined in vitro colonic fermentation models with immobilized fecal microbiota and cell models to study the human gut microbiota in the healthy and diseased. Journal of Biotechnology, 2010, 150, 59-59.	1.9	0
308	Biotechnology for enhancing plant production and food quality: IBS 2010 part III. Journal of Biotechnology, 2012, 159, 249-250.	1.9	0
309	Sa1762 T Cell Specific Loss of PTPN2 Leads to Miss-Balanced T Helper Cell Differentiation Resulting in Aggravated Intestinal Inflammation. Gastroenterology, 2014, 146, S-290.	0.6	0
310	P019 T cell specific loss of PTPN2 results in aggravated colitis and pronounced intestinal dysbiosis as observed in Crohn's disease patients. Journal of Crohn's and Colitis, 2014, 8, S72.	0.6	0
311	Editorial overview: Food biotechnology: Microbial ecosystem management: strategies to adapt ecosystems to improve performance and health impact. Current Opinion in Biotechnology, 2015, 32, v-viii.	3.3	0
312	Tu1826 - Presence of an Autoimmunity-Associated Variant in PTPN22 Promotes Chronic Colitis in a Microbiota Dependent Manner. Gastroenterology, 2018, 154, S-1030.	0.6	0
313	Detection, isolation and molecular characterisation of Shigatoxigenic O157 and non-O157 Escherichia coli in raw and fermented camel milk. African Journal of Microbiology Research, 2012, 6, .	0.4	0
314	Dietary nucleotides and yeast extract affect the composition and metabolic activities of the swine gut microbiota in a new in vitro fermentation model. FASEB Journal, 2013, 27, 867.1.	0.2	0
315	Mucin Cross-feeding Shapes The Metabolic Environment In The Infant Gut. , 2018, , .		0
316	Biotechnological approach to produce riboflavin enriched iru – using riboflavin overproducing Bacillus subtilis. Access Microbiology, 2019, 1, .	0.2	0
317	Optimized UV-Spectrophotometric Assay to Screen Bacterial Uricase Activity Using Whole Cell Suspension. Frontiers in Microbiology, 2022, 13, 853735.	1.5	Ο