Jarle Brinchmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9269009/publications.pdf

Version: 2024-02-01

119 papers 27,008 citations

53 h-index 24982 109 g-index

120 all docs

120 docs citations

times ranked

120

9707 citing authors

#	Article	IF	CITATIONS
1	THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, Supplement Series, 2009, 182, 543-558.	7.7	4,201
2	The host galaxies of active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2003, 346, 1055-1077.	4.4	2,990
3	The Origin of the Massâ€Metallicity Relation: Insights from 53,000 Starâ€forming Galaxies in the Sloan Digital Sky Survey. Astrophysical Journal, 2004, 613, 898-913.	4.5	2,784
4	Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 2003, 341, 33-53.	4.4	1,892
5	UV Star Formation Rates in the Local Universe. Astrophysical Journal, Supplement Series, 2007, 173, 267-292.	7.7	1,344
6	The Sixth Data Release of the Sloan Digital Sky Survey. Astrophysical Journal, Supplement Series, 2008, 175, 297-313.	7.7	1,202
7	The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies. Monthly Notices of the Royal Astronomical Society, 2004, 353, 713-731.	4.4	1,054
8	The Fourth Data Release of the Sloan Digital Sky Survey. Astrophysical Journal, Supplement Series, 2006, 162, 38-48.	7.7	948
9	SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH <i>g</i> = 14-20. Astronomical Journal, 2009, 137, 4377-4399.	4.7	905
10	The ages and metallicities of galaxies in the local universe. Monthly Notices of the Royal Astronomical Society, 2005, 362, 41-58.	4.4	894
11	Presentâ€Day Growth of Black Holes and Bulges: The Sloan Digital Sky Survey Perspective. Astrophysical Journal, 2004, 613, 109-118.	4.5	684
12	The Fifth Data Release of the Sloan Digital Sky Survey. Astrophysical Journal, Supplement Series, 2007, 172, 634-644.	7.7	615
13	The Dependence on Environment of the Color-Magnitude Relation of Galaxies. Astrophysical Journal, 2004, 601, L29-L32.	4.5	372
14	The GALEX Arecibo SDSS Survey - I. Gas fraction scaling relations of massive galaxies and first data release. Monthly Notices of the Royal Astronomical Society, 0, 403, 683-708.	4.4	355
15	The Mass Assembly and Star Formation Characteristics of Field Galaxies of Known Morphology. Astrophysical Journal, 2000, 536, L77-L80.	4.5	321
16	Ages and metallicities of early-type galaxies in the Sloan Digital Sky Survey: new insight into the physical origin of the colour-magnitude and the Mg2-ÏfV relations. Monthly Notices of the Royal Astronomical Society, 2006, 370, 1106-1124.	4.4	313
17	The MUSE <i>Hubble </i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A1.	5.1	236
18	THE ARECIBO LEGACY FAST ALFA SURVEY: THE GALAXY POPULATION DETECTED BY ALFALFA. Astrophysical Journal, 2012, 756, 113.	4.5	226

#	Article	IF	CITATIONS
19	Hubble Space Telescopelmaging of the CFRS and LDSS Redshift Surveys. II. Structural Parameters and the Evolution of Disk Galaxies toza ¹ / ₄ 1. Astrophysical Journal, 1998, 500, 75-94.	4.5	212
20	New insights into the stellar content and physical conditions of star-forming galaxies at $z=2\hat{a}\in$ 3 from spectral modelling. Monthly Notices of the Royal Astronomical Society, 2008, 385, 769-782.	4.4	201
21	UBIQUITOUS GIANT Lyα NEBULAE AROUND THE BRIGHTEST QUASARS AT zÂâ^1/4Â3.5 REVEALED WITH MUSE ^{â^—} . Astrophysical Journal, 2016, 831, 39.	4.5	201
22	Hubble Space Telescopelmaging of the CFRS and LDSS Redshift Surveys. I. Morphological Properties. Astrophysical Journal, 1998, 499, 112-133.	4.5	187
23	Empirical determination of the shape of dust attenuation curves in star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1760-1786.	4.4	172
24	The MUSE <i>Hubble </i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A8.	5.1	167
25	ABSORPTION-LINE PROBES OF THE PREVALENCE AND PROPERTIES OF OUTFLOWS IN PRESENT-DAY STAR-FORMING GALAXIES. Astronomical Journal, 2010, 140, 445-461.	4.7	163
26	The MUSE 3D view of the <i> Hubble < /i > Deep Field South. Astronomy and Astrophysics, 2015, 575, A75.</i>	5.1	162
27	Bursty stellar populations and obscured active galactic nuclei in galaxy bulges. Monthly Notices of the Royal Astronomical Society, 2007, 381, 543-572.	4.4	160
28	Metallicities and Physical Conditions in Starâ€forming Galaxies at <i>z</i> a^¹¼ 1.0–1.51. Astrophysical Journal, 2008, 678, 758-779.	4.5	154
29	Strongly star forming galaxies in the local Universe with nebular He <scp>ii</scp> λ4686 emission. Monthly Notices of the Royal Astronomical Society, 2012, 421, 1043-1063.	4.4	152
30	ACTIVE GALACTIC NUCLEI EMISSION LINE DIAGNOSTICS AND THE MASS-METALLICITY RELATION UP TO REDSHIFT $\langle i \rangle z \langle /i \rangle \hat{a}^1 /4 2$: THE IMPACT OF SELECTION EFFECTS AND EVOLUTION. Astrophysical Journal, 2014, 788, 88.	4.5	147
31	A detached stellar-mass black hole candidate in the globular cluster NGC 3201. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 475, L15-L19.	3.3	147
32	ON THE DEARTH OF COMPACT, MASSIVE, RED SEQUENCE GALAXIES IN THE LOCAL UNIVERSE. Astrophysical Journal, 2010, 720, 723-741.	4. 5	142
33	A census of metals and baryons in stars in the local Universe. Monthly Notices of the Royal Astronomical Society, 0, 383, 1439-1458.	4.4	135
34	CHARTING THE EVOLUTION OF THE AGES AND METALLICITIES OF MASSIVE GALAXIES SINCE $\langle i \rangle z \langle j \rangle = 0.7$. Astrophysical Journal, 2014, 788, 72.	4.5	130
35	A stellar census in globular clusters with MUSE: Binaries in NGC 3201. Astronomy and Astrophysics, 2019, 632, A3.	5.1	116
36	Relative merits of different types of rest-frame optical observations to constrain galaxy physical parameters. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2002-2024.	4.4	107

#	Article	IF	Citations
37	[ITAL]Hubble Space Telescope[/ITAL] Imaging of the CFRS and LDSS Redshift Surveys. III. Field Elliptical Galaxies at [FORMULA][F]0.2 <z<1.0[1999,="" 31-46.<="" 525,="" astrophysical="" f][="" formula].="" journal,="" td=""><td>4.5</td><td>106</td></z<1.0[>	4.5	106
38	The GALEX Arecibo SDSS Survey - II. The star formation efficiency of massive galaxies. Monthly Notices of the Royal Astronomical Society, 2010, 408, 919-934.	4.4	102
39	A CRITICAL LOOK AT THE MASS-METALLICITY-STAR FORMATION RATE RELATION IN THE LOCAL UNIVERSE. I. AN IMPROVED ANALYSIS FRAMEWORK AND CONFOUNDING SYSTEMATICS. Astrophysical Journal, 2014, 797, 126.	4.5	101
40	THE <i> GALEX </i> ARECIBO SDSS SURVEY. V. THE RELATION BETWEEN THE H I CONTENT OF GALAXIES AND METAL ENRICHMENT AT THEIR OUTSKIRTS. Astrophysical Journal, 2012, 745, 66.	4.5	93
41	GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES. Astronomical Journal, 2012, 143, 133.	4.7	92
42	Gas infall and stochastic star formation in galaxies in the local universe. Monthly Notices of the Royal Astronomical Society, 2006, 367, 1394-1408.	4.4	91
43	ON THE MASSES OF GALAXIES IN THE LOCAL UNIVERSE. Astrophysical Journal, 2010, 722, 1-19.	4.5	85
44	The Bluedisks project, a study of unusually H i-rich galaxies – I. H i sizes and morphology. Monthly Notices of the Royal Astronomical Society, 2013, 433, 270-294.	4.4	81
45	The MUSE Atlas of Disks (MAD): resolving star formation rates and gas metallicities on <100 pc scalesâ€. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5009-5027.	4.4	80
46	The MUSE-Wide survey: A first catalogue of 831 emission line galaxies. Astronomy and Astrophysics, 2017, 606, A12.	5.1	78
47	THE EXTENDED He II <i>λ</i> 4686-EMITTING REGION IN IZw 18 UNVEILED: CLUES FOR PECULIAR IONIZING SOURCES. Astrophysical Journal Letters, 2015, 801, L28.	8.3	77
48	MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397. Astronomy and Astrophysics, 2016, 588, A148.	5.1	77
49	Systematics of the Ultraviolet Rising Flux in a GALEX /SDSS Sample of Early-Type Galaxies. Astrophysical Journal, 2005, 619, L107-L110.	4.5	75
50	REDSHIFT EVOLUTION OF THE GALAXY VELOCITY DISPERSION FUNCTION. Astrophysical Journal Letters, 2011, 737, L31.	8.3	75
51	The Balmer decrement of Sloan Digital Sky Survey galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1402-1412.	4.4	75
52	A young star-forming galaxy at <i>z</i> = 3.5 with an extended Lyman α halo seen with MUSE. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4191-4208.	4.4	70
53	THE LOPSIDEDNESS OF PRESENT-DAY GALAXIES: CONNECTIONS TO THE FORMATION OF STARS, THE CHEMICAL EVOLUTION OF GALAXIES, AND THE GROWTH OF BLACK HOLES. Astrophysical Journal, 2009, 691, 1005-1020.	4.5	68
54	A MUSE map of the central Orion Nebula (M 42). Astronomy and Astrophysics, 2015, 582, A114.	5.1	60

#	Article	IF	Citations
55	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2018, 619, A27.	5.1	60
56	Estimating gas masses and dust-to-gas ratios from optical spectroscopy. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2112-2140.	4.4	56
57	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2020, 635, A82.	5.1	50
58	The MUSE <i>Hubble </i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A4.	5.1	48
59	First gas-phase metallicity gradients of $0.1~\rm \hat{a}\%^2$ z $\rm \hat{a}\%^2$ 0.8 galaxies with MUSE. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4293-4316.	4.4	47
60	Elevated ionizing photon production efficiency in faint high-equivalent-width Lyman- \hat{l}_{\pm} emitters. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5120-5130.	4.4	45
61	The colours of elliptical galaxies. Monthly Notices of the Royal Astronomical Society, 2006, 366, 717-726.	4.4	44
62	MUSEQuBES: calibrating the redshifts of Ly α emitters using stacked circumgalactic medium absorption profiles. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1013-1022.	4.4	44
63	UNVEILING THE MILKY WAY: A NEW TECHNIQUE FOR DETERMINING THE OPTICAL COLOR AND LUMINOSITY OF OUR GALAXY. Astrophysical Journal, 2015, 809, 96.	4.5	43
64	Exploring He†Ilâ€,, <i>λ </i> 1640 emission line properties at <i>z</i> â^1⁄42â^'4. Astronomy and Astrophysics, 20 624, A89.	019, 5.1	43
65	The ALMA Spectroscopic Survey in the HUDF: Nature and Physical Properties of Gas-mass Selected Galaxies Using MUSE Spectroscopy. Astrophysical Journal, 2019, 882, 140.	4.5	42
66	The Lopsidedness of Presentâ€Day Galaxies: Results from the Sloan Digital Sky Survey. Astrophysical Journal, 2008, 677, 186-200.	4.5	38
67	Dark Galaxy Candidates at Redshift â^1/43.5 Detected with MUSE*. Astrophysical Journal, 2018, 859, 53.	4.5	37
68	Searching for light in the darkness: Bounds on ALP dark matter with the optical MUSE-faint survey. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 814, 136075.	4.1	37
69	HIghMass-HIGH H I MASS, H I-RICH GALAXIES AT <i>z</i> i>a^1/4 0 SAMPLE DEFINITION, OPTICAL AND Hα IMAGING, AND STAR FORMATION PROPERTIES. Astrophysical Journal, 2014, 793, 40.	4.5	36
70	MusE GAs FLOw and Wind (MEGAFLOW) VIII. Discovery of a Mg <scp>ii</scp> emission halo probed by a quasar sightline. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4294-4315.	4.4	35
71	MUSE Spectroscopic Identifications of Ultra-faint Emission Line Galaxies with M _{UV} Ââ^1⁄4Ââ^'15 [*] . Astrophysical Journal Letters, 2018, 865, L1.	8.3	34
72	LLAMA: The <i>M</i> _{BH} – <i>Ïf</i> _{â<†} relation of the most luminous local AGNs. Astronomy and Astrophysics, 2020, 634, A114.	5.1	33

#	Article	IF	CITATIONS
73	The MUSE-Wide survey: a measurement of the Lyâ€‰î± emitting fraction among zÂ>Â3 galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 473, 30-37.	4.4	32
74	Galactic winds with MUSE: A direct detection of Fe ii* emission from a ⟨i>z ⟨/i>= 1.29 galaxy. Astronomy and Astrophysics, 2017, 605, A118.	5.1	31
7 5	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2018, 617, A62.	5.1	30
76	Gas-phase metallicity profiles of the Bluedisk galaxies: Is metallicity in a local star formation regulated equilibrium?. Monthly Notices of the Royal Astronomical Society, 2015, 451, 210-235.	4.4	29
77	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A3.	5.1	29
78	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A7.	5.1	28
79	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2020, 641, A118.	5.1	28
80	Inferring gas-phase metallicity gradients of galaxies at the seeing limit: a forward modelling approach. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2140-2163.	4.4	25
81	The MUSE Atlas of Discs (MAD): Ionized gas kinematic maps and an application to diffuse ionized gas. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4089-4107.	4.4	24
82	The MUSE-Faint survey. Astronomy and Astrophysics, 2020, 635, A107.	5.1	21
83	HIghMass—HIGH H I MASS, H I-RICH GALAXIES AT <i>>z</i> i>⹼ 0 HIGH-RESOLUTION VLA IMAGING OF UGC 9037 AND UGC 12506. Astronomical Journal, 2014, 148, 69.	4.7	19
84	Searching for proto-planets with MUSE. Astronomy and Astrophysics, 2020, 644, A149.	5.1	18
85	A stellar census in globular clusters with MUSE. Astronomy and Astrophysics, 2020, 635, A114.	5.1	17
86	A Giant Lyα Nebula and a Small-scale Clumpy Outflow in the System of the Exotic Quasar J0952+0114 Unveiled by MUSE ^{â^—} . Astrophysical Journal, 2019, 880, 47.	4.5	15
87	The galaxy population of the complex cluster system Abell 3921. Astronomy and Astrophysics, 2013, 557, A62.	5.1	14
88	Discovery of an old nova remnant in the Galactic globular cluster M 22. Astronomy and Astrophysics, 2019, 626, A69.	5.1	14
89	Reconstructing the Observed Ionizing Photon Production Efficiency at z \hat{a}^4 2 Using Stellar Population Models. Astrophysical Journal, 2020, 889, 180.	4.5	14
90	BULGELESS GALAXIES AT INTERMEDIATE REDSHIFT: SAMPLE SELECTION, COLOR PROPERTIES, AND THE EXISTENCE OF POWERFUL ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2014, 782, 22.	4. 5	12

#	Article	IF	CITATIONS
91	SDSS-IV MaNGA: characterizing non-axisymmetric motions in galaxy velocity fields using the Radon transform. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2217-2235.	4.4	12
92	Towards DIB mapping in galaxies beyond 100 Mpc. Astronomy and Astrophysics, 2015, 576, L3.	5.1	12
93	Are Wolf-Rayet Stars Able to Pollute the Interstellar Medium of Galaxies? Results from Integral Field Spectroscopy. Advances in Astronomy, 2013, 2013, 1-15.	1.1	11
94	Metallicity calibrations of galaxies with low star formation rates: the influence of a stochastic IMF. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1612-1625.	4.4	11
95	Characterizing the Protolunar Disk of the Accreting Companion GQ Lupi B*. Astronomical Journal, 2021, 162, 286.	4.7	11
96	HIGHMASS—HIGH H iÂMASS, H i-RICH GALAXIES AT ZÂâ^¼ÂO: COMBINED H iÂAND H ₂ OBSERVATI Astronomical Journal, 2016, 152, 225.	IQNS.	10
97	ATLAS probe: Breakthrough science of galaxy evolution, cosmology, Milky Way, and the Solar System. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	10
98	Measuring the Average Molecular Gas Content of Star-forming Galaxies at $z=3\hat{a}\in 4$. Astrophysical Journal, 2021, 916, 12.	4.5	10
99	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2022, 657, A90.	5.1	10
100	The UV 2175Ã attenuation bump and its correlation with PAH emission at $\langle i \rangle z \langle i \rangle$ â ¹ / ₄ 2. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1886-1894.	4.4	10
101	The Tully-Fisher relation in dense groups at <i>z</i> â^¼â€"0.7 in the MAGIC survey. Astronomy and Astrophysics, 2021, 647, A152.	5.1	8
102	Mapping diffuse interstellar bands in the local ISM on small scales via MUSE 3D spectroscopy. Astronomy and Astrophysics, 2017, 607, A133.	5.1	7
103	Spatially resolved signature of quenching in star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2347-2366.	4.4	7
104	A MUSE view of the asymmetric jet from HD 163296. Astronomy and Astrophysics, 2021, 650, L6.	5.1	7
105	A stellar census in globular clusters with MUSE. Astronomy and Astrophysics, 2021, 653, L8.	5.1	6
106	Optical emission lines in the most massive galaxies: Morphology, kinematics, and ionisation properties. Astronomy and Astrophysics, 2021, 649, A63.	5.1	5
107	A study of the kinematics of unusually H Iâ€rich galaxies. Astronomische Nachrichten, 2015, 336, 284-311.	1.2	4
108	Extragalactic Fields Optimized for Adaptive Optics. Publications of the Astronomical Society of the Pacific, 2011, 123, 348-365.	3.1	3

#	Article	lF	CITATIONS
109	A multiple dry merger at $z=0.18$: witnessing the assembly of a massive elliptical galaxy. Monthly Notices of the Royal Astronomical Society, 2014, 443, 288-298.	4.4	2
110	The Relationship between Stellar and Halo Masses of Disk Galaxies at $z=0.2\ \hat{a}^{2}$ 1.2. Symposium - International Astronomical Union, 2004, 220, 399-404.	0.1	1
111	Optically faint radio sources: reborn AGN?. Proceedings of the International Astronomical Union, 2011, 7, 231-233.	0.0	1
112	The galaxy population of the complex cluster system Abell 3921(Corrigendum). Astronomy and Astrophysics, 2014, 567, C1.	5.1	1
113	The resolved history of galaxy evolution. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 2711-2723.	3.4	O
114	Dark matter in elliptical galaxies: prospects for WFOS/TMT. Proceedings of the International Astronomical Union, 2005, 1, 187-191.	0.0	0
115	Challenges in Stellar Population Studies. Proceedings of the International Astronomical Union, 2009, 5, 3-12.	0.0	O
116	Charting the evolution of the ages and metallicities of massive galaxies since $z=0.7$. Proceedings of the International Astronomical Union, 2011, 7, 465-467.	0.0	0
117	The evolution of the ages and metallicities of massive galaxies since $\langle i \rangle z \langle j \rangle = 0.7$. Proceedings of the International Astronomical Union, 2014, 10, 126-129.	0.0	O
118	Probing the ISM of He <scp>ii</scp> î»1640 emitters at <i>z</i> = 2–4 via MUSE. Proceedings of the International Astronomical Union, 2019, 15, 235-239.	0.0	0
119	ATLAS probe for the study of galaxy evolution with 300,000,000 galaxy spectra. , 2018, , .		O