Joshua Leonard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9268889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The evolution of synthetic receptor systems. Nature Chemical Biology, 2022, 18, 244-255.	8.0	42
2	GAMES: A Dynamic Model Development Workflow for Rigorous Characterization of Synthetic Genetic Systems. ACS Synthetic Biology, 2022, 11, 1009-1029.	3.8	3
3	Elucidating Design Principles for Engineering Cellâ€Derived Vesicles to Inhibit SARSâ€CoVâ€2ÂInfection. Small, 2022, 18, e2200125.	10.0	6
4	Fighting fire with fire: deploying complexity in computational modeling to effectively characterize complex biological systems. Current Opinion in Biotechnology, 2022, 75, 102704.	6.6	1
5	Engineering Mammalian Cells to Communicate Using a Language from Plants. , 2022, 1, 137-139.		Ο
6	Computation-guided optimization of split protein systems. Nature Chemical Biology, 2021, 17, 531-539.	8.0	45
7	Model-guided design of mammalian genetic programs. Science Advances, 2021, 7, .	10.3	23
8	RNA Sequence and Structure Determinants of Pol III Transcriptional Termination in Human Cells. Journal of Molecular Biology, 2021, 433, 166978.	4.2	4
9	Control of mammalian cell-based devices with genetic programming. Current Opinion in Systems Biology, 2021, 28, 100372.	2.6	1
10	Synthetic biology: at the crossroads of genetic engineering and human therapeutics—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, , .	3.8	2
11	Nanofountain Probe Electroporation Enables Versatile Singleâ€Cell Intracellular Delivery and Investigation of Postpulse Electropore Dynamics. Small, 2020, 16, e2002616.	10.0	17
12	The COMET toolkit for composing customizable genetic programs in mammalian cells. Nature Communications, 2020, 11, 779.	12.8	57
13	Macrophages employ quorum licensing to regulate collective activation. Nature Communications, 2020, 11, 878.	12.8	61
14	Elucidation and refinement of synthetic receptor mechanisms. Synthetic Biology, 2020, 5, ysaa017.	2.2	21
15	Highly Stable, Ultrasmall Polymer-Grafted Nanobins (usPGNs) with Stimuli-Responsive Capability. Journal of Physical Chemistry Letters, 2018, 9, 1133-1139.	4.6	3
16	Reframing cell therapy for cancer. Nature Chemical Biology, 2018, 14, 204-205.	8.0	6
17	Development of novel metabolite-responsive transcription factors via transposon-mediated protein fusion. Protein Engineering, Design and Selection, 2018, 31, 55-63.	2.1	13
18	Enrichment of Extracellular Vesicle Subpopulations Via Affinity Chromatography. Methods in Molecular Biology, 2018, 1740, 109-124.	0.9	12

Joshua Leonard

#	Article	IF	CITATIONS
19	Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA Strategic Workshop. JCI Insight, 2018, 3, .	5.0	41
20	A Systematic Evaluation of Factors Affecting Extracellular Vesicle Uptake by Breast Cancer Cells. Tissue Engineering - Part A, 2017, 23, 1274-1282.	3.1	24
21	Rewiring human cellular input–output using modular extracellular sensors. Nature Chemical Biology, 2017, 13, 202-209.	8.0	124
22	Extended Concerted Rotation Technique Enhances the Sampling Efficiency of the Computational Peptide-Design Algorithm. Journal of Chemical Theory and Computation, 2017, 13, 5709-5720.	5.3	12
23	Building with intent: Technologies and principles for engineering mammalian cell-based therapies to sense and respond. Current Opinion in Biomedical Engineering, 2017, 4, 127-133.	3.4	8
24	Multiplexing Engineered Receptors for Multiparametric Evaluation of Environmental Ligands. ACS Synthetic Biology, 2017, 6, 2042-2055.	3.8	30
25	Engineering Modular Biosensors to Confer Metabolite-Responsive Regulation of Transcription. ACS Synthetic Biology, 2017, 6, 311-325.	3.8	38
26	A platform for actively loading cargo RNA to elucidate limiting steps in EVâ€mediated delivery. Journal of Extracellular Vesicles, 2016, 5, 31027.	12.2	157
27	Regulation of the IL-10-driven macrophage phenotype under incoherent stimuli. Innate Immunity, 2016, 22, 647-657.	2.4	60
28	Adding energy minimization strategy to peptideâ€design algorithm enables better search for RNAâ€binding peptides: Redesigned <i>λ</i> N peptide binds <i>boxB</i> RNA. Journal of Computational Chemistry, 2016, 37, 2423-2435.	3.3	16
29	Engineering cell-based therapies to interface robustly with host physiology. Advanced Drug Delivery Reviews, 2016, 105, 55-65.	13.7	18
30	Transforming growth factor-beta 1 delivery from microporous scaffolds decreases inflammation post-implant and enhances function of transplanted islets. Biomaterials, 2016, 80, 11-19.	11.4	103
31	Stabilization of Exosome-targeting Peptides via Engineered Glycosylation. Journal of Biological Chemistry, 2015, 290, 8166-8172.	3.4	251
32	Spatial and Functional Heterogeneities Shape Collective Behavior of Tumor-Immune Networks. PLoS Computational Biology, 2015, 11, e1004181.	3.2	35
33	Regulation of Bacterial Gene Expression by Protease-Alleviated Spatial Sequestration (PASS). ACS Synthetic Biology, 2015, 4, 966-974.	3.8	3
34	Contributions of Unique Intracellular Domains to Switchlike Biosensing by Toll-like Receptor 4. Journal of Biological Chemistry, 2015, 290, 8764-8777.	3.4	8
35	Therapeutic Applications of Extracellular Vesicles: Clinical Promise and Open Questions. Annual Review of Pharmacology and Toxicology, 2015, 55, 439-464.	9.4	415
36	The Rise of Mammals. ACS Synthetic Biology, 2014, 3, 878-879.	3.8	0

#	Article	IF	CITATIONS
37	Modular Extracellular Sensor Architecture for Engineering Mammalian Cell-based Devices. ACS Synthetic Biology, 2014, 3, 892-902.	3.8	120
38	Lentivirus delivery of ILâ€10 to promote and sustain macrophage polarization towards an antiâ€inflammatory phenotype. Biotechnology and Bioengineering, 2014, 111, 1210-1221.	3.3	91
39	Modulation of leukocyte infiltration and phenotype in microporous tissue engineering scaffolds via vector induced IL-10 expression. Biomaterials, 2014, 35, 2024-2031.	11.4	66