Zijie Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9268714/publications.pdf

Version: 2024-02-01

		218677	330143
37	2,122 citations	26	37
papers	citations	h-index	g-index
37	37	37	1595
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Improvement of Gas and Humidity Sensing Properties of Organ-like MXene by Alkaline Treatment. ACS Sensors, 2019, 4, 1261-1269.	7.8	232
2	Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sensors and Actuators B: Chemical, 2021, 326, 128828.	7.8	199
3	The room temperature gas sensor based on Polyaniline@flower-like WO3 nanocomposites and flexible PET substrate for NH3 detection. Sensors and Actuators B: Chemical, 2018, 259, 505-513.	7.8	159
4	Highly sensitive and selective triethylamine gas sensor based on porous SnO2/Zn2SnO4 composites. Sensors and Actuators B: Chemical, 2018, 266, 213-220.	7.8	123
5	The gas sensor utilizing polyaniline/ MoS2 nanosheets/ SnO2 nanotubes for the room temperature detection of ammonia. Sensors and Actuators B: Chemical, 2021, 332, 129444.	7.8	107
6	Mixed-potential type NH3 sensor based on stabilized zirconia and Ni3V2O8 sensing electrode. Sensors and Actuators B: Chemical, 2015, 210, 795-802.	7.8	96
7	Enhanced room temperature gas sensor based on Au-loaded mesoporous In2O3 nanospheres@polyaniline core-shell nanohybrid assembled on flexible PET substrate for NH3 detection. Sensors and Actuators B: Chemical, 2018, 276, 526-533.	7.8	95
8	Design and preparation of the WO3 hollow spheres@ PANI conducting films for room temperature flexible NH3 sensing device. Sensors and Actuators B: Chemical, 2019, 289, 252-259.	7.8	87
9	Room temperature gas sensor based on tin dioxide@ polyaniline nanocomposite assembled on flexible substrate: ppb-level detection of NH3. Sensors and Actuators B: Chemical, 2019, 299, 126970.	7.8	75
10	Self-Assembly Template Driven 3D Inverse Opal Microspheres Functionalized with Catalyst Nanoparticles Enabling a Highly Efficient Chemical Sensing Platform. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5835-5844.	8.0	67
11	Room temperature high performance NH3 sensor based on GO-rambutan-like polyaniline hollow nanosphere hybrid assembled to flexible PET substrate. Sensors and Actuators B: Chemical, 2018, 273, 726-734.	7.8	63
12	Mixed potential type acetone sensor using stabilized zirconia and M3V2O8 (M: Zn, Co and Ni) sensing electrode. Sensors and Actuators B: Chemical, 2015, 221, 673-680.	7.8	62
13	Stabilized zirconia-based mixed potential type sensors utilizing MnNb2O6 sensing electrode for detection of low-concentration SO2. Sensors and Actuators B: Chemical, 2017, 238, 1024-1031.	7.8	58
14	High performance mixed potential type acetone sensor based on stabilized zirconia and NiNb 2 O 6 sensing electrode. Sensors and Actuators B: Chemical, 2016, 229, 200-208.	7.8	56
15	Room temperature flexible NH3 sensor based on polyaniline coated Rh-doped SnO2 hollow nanotubes. Sensors and Actuators B: Chemical, 2021, 330, 129313.	7.8	48
16	Highly selective and stable mixed-potential type gas sensor based on stabilized zirconia and Cd2V2O7 sensing electrode for NH3 detection. Sensors and Actuators B: Chemical, 2019, 279, 213-222.	7.8	45
17	YSZ-based NO2 sensor utilizing hierarchical In2O3 electrode. Sensors and Actuators B: Chemical, 2016, 222, 698-706.	7.8	40
18	Polyaniline @ porous nanosphere SnO2/Zn2SnO4 nanohybrid for selective room temperature flexible NH3 sensor. Sensors and Actuators B: Chemical, 2020, 317, 128218.	7.8	39

#	Article	IF	Citations
19	Fabrication of well-ordered porous array mounted with gold nanoparticles and enhanced sensing properties for mixed potential-type zirconia-based NH3 sensor. Sensors and Actuators B: Chemical, 2017, 243, 1083-1091.	7.8	37
20	High-response mixed-potential type planar YSZ-based NO2 sensor coupled with CoTiO3 sensing electrode. Sensors and Actuators B: Chemical, 2019, 287, 185-190.	7.8	36
21	High-temperature stabilized zirconia-based sensors utilizing MNb2O6 (M: Co, Ni and Zn) sensing electrodes for detection of NO2. Sensors and Actuators B: Chemical, 2016, 232, 523-530.	7.8	35
22	Self-Assembly 3D Porous Crumpled MXene Spheres as Efficient Gas and Pressure Sensing Material for Transient All-MXene Sensors. Nano-Micro Letters, 2022, 14, 56.	27.0	33
23	YSZ-based mixed potential H2S sensor using La2NiO4 sensing electrode. Sensors and Actuators B: Chemical, 2018, 255, 3033-3039.	7.8	32
24	Nafion-based amperometric H2S sensor using Pt-Rh/C sensing electrode. Sensors and Actuators B: Chemical, 2018, 273, 635-641.	7.8	30
25	YSZ-based acetone sensor using a Cd2SnO4 sensing electrode for exhaled breath detection in medical diagnosis. Sensors and Actuators B: Chemical, 2021, 345, 130321.	7.8	30
26	The mixed potential type gas sensor based on stabilized zirconia and molybdate MMoO4 (M: Ni, Co and) Tj ETQq0 430-437.	0 0 rgBT / 7.8	Overlock 1 29
27	Solid state electrolyte type gas sensor using stabilized zirconia and MTiO3 (M: Zn, Co and Ni)-SE for detection of low concentration of SO2. Sensors and Actuators B: Chemical, 2019, 296, 126644.	7.8	27
28	Ultrafast-response stabilized zirconia-based mixed potential type triethylamine sensor utilizing CoMoO4 sensing electrode. Sensors and Actuators B: Chemical, 2018, 272, 433-440.	7.8	24
29	YSZ-based solid electrolyte type sensor utilizing ZnMoO4 sensing electrode for fast detection of ppb-level H2S. Sensors and Actuators B: Chemical, 2020, 302, 127205.	7.8	23
30	Mixed potential type H2S sensor based on stabilized zirconia and a Co2SnO4 sensing electrode for halitosis monitoring. Sensors and Actuators B: Chemical, 2020, 321, 128587.	7.8	23
31	High performance mixed-potential-type Zirconia-based NO 2 sensor with self-organizing surface structures fabricated by low energy ion beam etching. Sensors and Actuators B: Chemical, 2018, 263, 445-451.	7.8	21
32	Triethylamine sensing with a mixed potential sensor based on Ce0.8Gd0.2O1.95 solid electrolyte and La1-xSrxMnO3 (x = 0.1, 0.2, 0.3) sensing electrodes. Sensors and Actuators B: Chemical, 2021, 327, 128830.	7.8	21
33	The Introduction of Defects in Ti ₃ C ₂ T <i>_x</i> and Ti ₃ C _Z â€Assisted Reduction of Graphene Oxide for Highly Selective Detection of ppbâ€Level NO ₂ . Advanced Functional Materials, 2022, 32, .	14.9	21
34	YSZ-based mixed-potential type highly sensitive acetylene sensor based on porous SnO2/Zn2SnO4 as sensing electrode. Sensors and Actuators B: Chemical, 2019, 293, 166-172.	7.8	16
35	Room-Temperature Mixed-Potential Type ppb-Level NO Sensors Based on K ₂ Fe ₄ O ₇ Electrolyte and Ni/Fe–MOF Sensing Electrodes. ACS Sensors, 2021, 6, 4435-4442.	7.8	16
36	Specificity improvement of the YSZ-based mixed potential gas sensor for acetone and hydrogen sulfide detection. Sensors and Actuators B: Chemical, 2021, 341, 129292.	7.8	15

#	Article	IF	CITATIONS
37	The Introduction of Defects in Ti ₃ C ₂ T(i> _x) and Ti ₃ C ₂ T(i>) â€Assisted Reduction of Graphene Oxide for Highly Selective Detection of ppbâ€Level NO ₂ (Adv. Funct. Mater. 15/2022). Advanced Functional Materials, 2022, 32, .	14.9	2