Jes \tilde{A}^{o} s M Carnicer

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/9268663/publications.pdf
Version: 2024-02-01


```
        Shape preserving representations and optimality of the Bernstein basis. Advances in Computational
1 Shape preserving representations
```

Totally positive bases for shape preserving curve design and optimality of B-splines. Computer Aided Geometric Design, 1994, 11, 633-654.

Critical Length for Design Purposes and Extended Chebyshev Spaces. Constructive Approximation,
Critical Length for
$2003,20,55-71$.
1.8

71

4 Least supported bases and local linear independence. Numerische Mathematik, 1994, 67, 289-301.
0.9

23

5 Convexity preserving interpolation and Powell-Sabin elements. Computer Aided Geometric Design,
0.5

1992, 9, 279-289.
1.1

6 Generation of lattices of points for bivariate interpolation. Numerical Algorithms, 2005, 39, 69-79.
$7 \quad$ On the progressive iteration approximation property and alternative iterations. Computer Aided
$7 \quad$ Geometric Design, 2011, 28, 523-526.
$0.5 \quad 17$

8 Optimal stability of the Lagrange formula and conditioning of the Newton formula. Journal of
Approximation Theory, 2019, 238, 52-66.
$0.5 \quad 17$

9 Interpolation lattices in several variables. Numerische Mathematik, 2006, 102, 559-581.
0.9

16

10 On the Critical Lengths of Cycloidal Spaces. Constructive Approximation, 2014, 39, 573-583.
1.8
0.8

13

12 Interpolation on lattices generated by cubic pencils. Advances in Computational Mathematics, 2006, 24, 113-130.
0.8

13

13 Weighted interpolation for equidistant nodes. Numerical Algorithms, 2010, 55, 223-232.
1.1

12

14 Richardson method and totally nonnegative linear systems. Linear Algebra and Its Applications, 2010, 433, 2010-2017.

Piecewise linear interpolants to Lagrange and Hermite convex scattered data. Numerical Algorithms, 1996, 13, 345-364.
1.1

11

16 Representing circles with five control points. Computer Aided Geometric Design, 2003, 20, 501-511.
0.5

9
Multivariate convexity preserving interpolation by smooth functions. Advances in Computational
Mathematics, 1995, 3, 395-404.

Inverse central ordering for the Newton interpolation formula. Numerical Algorithms, 2022, 90, 1691-1713.

Cubic pencils of lines and bivariate interpolation. Journal of Computational and Applied Mathematics,
2008, 219, 370-382.

Configurations of nodes with defects greater than three. Journal of Computational and Applied
Mathematics, 2010, 233, 1640-1648.

29 Interpolation with symmetric polynomials. Numerical Algorithms, 2017, 74, 1-18.

Roundoff errors for polynomial evaluation by a family of formulae. Computing (Vienna/New York),
2008, 82, 199-215.

Classification of sets satisfying the geometric characterization. Numerical Algorithms, 2009, 50,
145-154.

32 Richardsonâ $€^{\top M}{ }^{M}$ iterative method for surface interpolation. BIT Numerical Mathematics, 2013, 53, 385.
1.0

Extensions of planar GC sets and syzygy matrices. Advances in Computational Mathematics, 2019, 45,
655-673.

A Newton formula for generalized Berzolari-Radon sets. Advances in Computational Mathematics,
2015, 41, 373-386.

Multivariate polynomial interpolation using even and odd polynomials. BIT Numerical Mathematics,
2018, 58, 27-49.

A totally positive basis for circle approximations. Revista De La Real Academia De Ciencias Exactas,
Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 3383-3397.

Interpolation mixing hyperbolic functions and polynomials. Rocky Mountain Journal of Mathematics,

