List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9268211/publications.pdf Version: 2024-02-01

ΜΑΡΚ Ε ΗΛΗΝ

#	Article	IF	CITATIONS
1	The Genome of the Sea Urchin <i>Strongylocentrotus purpuratus</i> . Science, 2006, 314, 941-952.	12.6	1,018
2	The African coelacanth genome provides insights into tetrapod evolution. Nature, 2013, 496, 311-316.	27.8	612
3	Aryl hydrocarbon receptors: diversity and evolution11Invited review for Chemico-Biological Interactions Chemico-Biological Interactions, 2002, 141, 131-160.	4.0	542
4	The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science, 2016, 354, 1305-1308.	12.6	348
5	Effects of ortho- and non-ortho-substituted polychlorinated biphenyl congeners on the hepatic monooxygenase system in scup (Stenotomus chrysops). Toxicology and Applied Pharmacology, 1989, 98, 422-433.	2.8	264
6	Molecular evolution of two vertebrate aryl hydrocarbon (dioxin) receptors (AHR1 and AHR2) and the PAS family. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13743-13748.	7.1	263
7	The aryl hydrocarbon receptor: A comparative perspective. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1998, 121, 23-53.	0.5	238
8	The chemical defensome: Environmental sensing and response genes in the Strongylocentrotus purpuratus genome. Developmental Biology, 2006, 300, 366-384.	2.0	235
9	Cytochrome P4501A induction and inhibition by 3,3′,4,4′-tetrachlorobiphenyl in an Ah receptor-containing fish hepatoma cell line (PLHC-1). Aquatic Toxicology, 1993, 26, 185-208.	4.0	233
10	A ligand for the aryl hydrocarbon receptor isolated from lung. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14694-14699.	7.1	233
11	Mechanistic Basis of Resistance to PCBs in Atlantic Tomcod from the Hudson River. Science, 2011, 331, 1322-1325.	12.6	202
12	Fundulus as the premier teleost model in environmental biology: Opportunities for new insights using genomics. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2007, 2, 257-286.	1.0	194
13	The molecular basis for differential dioxin sensitivity in birds: Role of the aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6252-6257.	7.1	185
14	The Zebrafish (Danio rerio) Aryl Hydrocarbon Receptor Type 1 Is a Novel Vertebrate Receptor. Molecular Pharmacology, 2002, 62, 234-249.	2.3	165
15	Relative Contributions of Affinity and Intrinsic Efficacy to Aryl Hydrocarbon Receptor Ligand Potency. Toxicology and Applied Pharmacology, 2000, 168, 160-172.	2.8	163
16	An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and β-naphthoflavone binding. Gene, 2001, 278, 223-234.	2.2	151
17	Identification and Functional Characterization of Two Highly Divergent Aryl Hydrocarbon Receptors (AHR1 and AHR2) in the TeleostFundulus heteroclitus. Journal of Biological Chemistry, 1999, 274, 33814-33824.	3.4	146
18	Binding of polycyclic aromatic hydrocarbons (PAHs) to teleost aryl hydrocarbon receptors (AHRs). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2002, 133, 55-68.	1.6	145

#	Article	IF	CITATIONS
19	Regulation of constitutive and inducible AHR signaling: Complex interactions involving the AHR repressor. Biochemical Pharmacology, 2009, 77, 485-497.	4.4	140
20	Photoaffinity Labeling of the Ah Receptor: Phylogenetic Survey of Diverse Vertebrate and Invertebrate Species. Archives of Biochemistry and Biophysics, 1994, 310, 218-228.	3.0	138
21	Acquired Resistance to Ah Receptor Agonists in a Population of Atlantic Killifish (Fundulus) Tj ETQq1 1 0.784314 Xenobiotic Metabolizing Enzymes. Toxicological Sciences, 2001, 60, 77-91.	rgBT /Over 3.1	lock 10 Tf 138
22	Rapid assessment of induced cytochrome P4501 a protein and catalytic activity in fish hepatoma cells grown in multiwell plates: Response to TCDD, TCDF, and two planar PCBS. Environmental Toxicology and Chemistry, 1996, 15, 582-591.	4.3	137
23	AHR1B, a new functional aryl hydrocarbon receptor in zebrafish: tandem arrangement of ahr1b and ahr2 genes. Biochemical Journal, 2005, 392, 153-161.	3.7	137
24	Role of AHR2 in the Expression of Novel Cytochrome P450 1 Family Genes, Cell Cycle Genes, and Morphological Defects in Developing Zebra Fish Exposed to 3,3′,4,4′,5-Pentachlorobiphenyl or 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Toxicological Sciences, 2007, 100, 180-193.	3.1	136
25	Repression of Aryl Hydrocarbon Receptor (AHR) Signaling by AHR Repressor: Role of DNA Binding and Competition for AHR Nuclear Translocator. Molecular Pharmacology, 2008, 73, 387-398.	2.3	133
26	Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: insights from comparative genomics. Journal of Experimental Zoology Part A, Comparative Experimental Biology, 2006, 305A, 693-706.	1.3	127
27	RAPID ASSESSMENT OF INDUCED CYTOCHROME P4501A PROTEIN AND CATALYTIC ACTIVITY IN FISH HEPATOMA CELLS GROWN IN MULTIWELL PLATES: RESPONSE TO TCDD, TCDF, AND TWO PLANAR PCBS. Environmental Toxicology and Chemistry, 1996, 15, 582.	4.3	123
28	Key Amino Acids in the Aryl Hydrocarbon Receptor Predict Dioxin Sensitivity in Avian Species. Environmental Science & Technology, 2008, 42, 7535-7541.	10.0	121
29	Regulatory Interactions among Three Members of the Vertebrate Aryl Hydrocarbon Receptor Family: AHR Repressor, AHR1, and AHR2. Journal of Biological Chemistry, 2002, 277, 6949-6959.	3.4	119
30	Catalytic and Immunochemical Characterization of Hepatic Microsomal Cytochromes P450 in Beluga Whale (Delphinapterus leucas). Toxicology and Applied Pharmacology, 1994, 126, 45-57.	2.8	117
31	Two Forms of Aryl Hydrocarbon Receptor Type 2 in Rainbow Trout (Oncorhynchus mykiss). Journal of Biological Chemistry, 1999, 274, 15159-15166.	3.4	111
32	Identification of Cinnabarinic Acid as a Novel Endogenous Aryl Hydrocarbon Receptor Ligand That Drives IL-22 Production. PLoS ONE, 2014, 9, e87877.	2.5	106
33	Regulation of Cytochrome P4501A1 in Teleosts: Sustained Induction of CYP1A1 mRNA, Protein, and Catalytic Activity by 2,3,7,8-Tetrachlorodibenzofuran in the Marine Fish Stenotomus chrysops. Toxicology and Applied Pharmacology, 1994, 127, 187-198.	2.8	105
34	Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo. Free Radical Biology and Medicine, 2013, 65, 89-101.	2.9	105
35	When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish (<i>Fundulus heteroclitus</i>) populations. Evolutionary Applications, 2017, 10, 762-783.	3.1	102
36	Amino Acid Sequence of the Ligand-Binding Domain of the Aryl Hydrocarbon Receptor 1 Predicts Sensitivity of Wild Birds to Effects of Dioxin-Like Compounds. Toxicological Sciences, 2013, 131, 139-152.	3.1	101

#	Article	IF	CITATIONS
37	Biomarkers and bioassays for detecting dioxin-like compounds in the marine environment. Science of the Total Environment, 2002, 289, 49-69.	8.0	96
38	Immunohistochemical localization of environmentally induced cytochrome P450IA1 in multiple organs of the marine teleost Stenotomus chrysops (scup). Toxicology and Applied Pharmacology, 1991, 110, 486-504.	2.8	94
39	Developmental and Tissue-Specific Expression of AHR1, AHR2, and ARNT2 in Dioxin-Sensitive and -Resistant Populations of the Marine Fish Fundulus heteroclitus. Toxicological Sciences, 2000, 57, 229-239.	3.1	93
40	Diversity as opportunity: Insights from 600 million years of AHR evolution. Current Opinion in Toxicology, 2017, 2, 58-71.	5.0	92
41	Serum Alters the Uptake and Relative Potencies of Halogenated Aromatic Hydrocarbons in Cell Culture Bioassays. Toxicological Sciences, 2000, 53, 316-325.	3.1	87
42	2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptotic cell death and cytochrome P4501A expression in developing Fundulus heteroclitus embryos. Aquatic Toxicology, 2001, 53, 127-138.	4.0	83
43	Nrf2b, Novel Zebrafish Paralog of Oxidant-responsive Transcription Factor NF-E2-related Factor 2 (NRF2). Journal of Biological Chemistry, 2012, 287, 4609-4627.	3.4	83
44	The aryl hydrocarbon receptor constitutively represses c-myc transcription in human mammary tumor cells. Oncogene, 2005, 24, 7869-7881.	5.9	81
45	Chronic retene exposure causes sustained induction of CYP1A activity and protein in rainbow trout (<i>Oncorhynchus mykiss</i>). Environmental Toxicology and Chemistry, 1998, 17, 2347-2353.	4.3	80
46	Functional Characterization and Evolutionary History of Two Aryl Hydrocarbon Receptor Isoforms (AhR1 and AhR2) from Avian Species. Toxicological Sciences, 2007, 99, 101-117.	3.1	78
47	Dioxin Toxicology and the Aryl Hydrocarbon Receptor: Insights from Fish and Other Non-traditional Models. Marine Biotechnology, 2001, 3, S224-S238.	2.4	77
48	Two Zebrafish Alcohol Dehydrogenases Share Common Ancestry with Mammalian Class I, II, IV, and V Alcohol Dehydrogenase Genes but Have Distinct Functional Characteristics. Journal of Biological Chemistry, 2004, 279, 38303-38312.	3.4	77
49	Duplicate aryl hydrocarbon receptor repressor genes (ahrr1 and ahrr2) in the zebrafish Danio rerio: Structure, function, evolution, and AHR-dependent regulation in vivo. Archives of Biochemistry and Biophysics, 2005, 441, 151-167.	3.0	76
50	Nrf2 and Nrf2-related proteins in development and developmental toxicity: Insights from studies in zebrafish (Danio rerio). Free Radical Biology and Medicine, 2015, 88, 275-289.	2.9	76
51	Interaction of hexachlorobenzene with the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in vitro and in vivo,. Archives of Biochemistry and Biophysics, 1989, 270, 344-355.	3.0	73
52	The Ah receptor in marine animals: phylogenetic distribution and relationship to cytochrome P4501A inducibility. Marine Environmental Research, 1992, 34, 87-92.	2.5	72
53	Aryl hydrocarbon receptor polymorphisms and dioxin resistance in Atlantic killifish (Fundulus) Tj ETQq1 1 0.78	4314 rgBT /	Overlock 10
54	The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chemical Research in Toxicology, 2020, 33, 860-879.	3.3	68

4

#	Article	IF	CITATIONS
55	Cytochromes P450 (CYP) in thePoeciliopsis lucidaHepatocellular Carcinoma Cell Line (PLHC-1): Dose- and Time-Dependent Glucocorticoid Potentiation of CYP1A Induction without Induction of CYP3A. Archives of Biochemistry and Biophysics, 1996, 329, 113-122.	3.0	63
56	EXPRESSION AND INDUCIBILITY OF ARYL HYDROCARBON RECEPTOR PATHWAY GENES IN WILD-CAUGHT KILLIFISH (FUNDULUS HETEROCLITUS) WITH DIFFERENT CONTAMINANT-EXPOSURE HISTORIES. Environmental Toxicology and Chemistry, 2003, 22, 2337.	4.3	63
57	The Bioflavonoid Galangin Blocks Aryl Hydrocarbon Receptor Activation and Polycyclic Aromatic Hydrocarbon-Induced Pre-B Cell Apoptosis. Molecular Pharmacology, 2000, 58, 515-525.	2.3	62
58	Comparative Analysis of Homology Models of the Ah Receptor Ligand Binding Domain: Verification of Structure–Function Predictions by Site-Directed Mutagenesis of a Nonfunctional Receptor. Biochemistry, 2013, 52, 714-725.	2.5	60
59	The Role of Polycyclic Aromatic Hydrocarbon Metabolism in Dimethylbenz[a]anthracene-Induced Pre-B Lymphocyte Apoptosis. Toxicology and Applied Pharmacology, 1999, 161, 10-22.	2.8	58
60	The role of Nrf1 and Nrf2 in the regulation of glutathione and redox dynamics in the developing zebrafish embryo. Redox Biology, 2017, 13, 207-218.	9.0	58
61	Blubber morphology in wild bottlenose dolphins (<i>Tursiops truncatus</i>) from the Southeastern United States: Influence of geographic location, age class, and reproductive state. Journal of Morphology, 2008, 269, 496-511.	1.2	54
62	Generalized Concentration Addition Predicts Joint Effects of Aryl Hydrocarbon Receptor Agonists with Partial Agonists and Competitive Antagonists. Environmental Health Perspectives, 2010, 118, 666-672.	6.0	54
63	Sequence and In Vitro Function of Chicken, Ring-Necked Pheasant, and Japanese Quail AHR1 Predict In Vivo Sensitivity to Dioxins. Environmental Science & Technology, 2012, 46, 2967-2975.	10.0	54
64	Functional Diversity of Vertebrate ARNT Proteins: Identification of ARNT2 as the Predominant Form of ARNT in the Marine Teleost,Fundulus heteroclitus. Archives of Biochemistry and Biophysics, 1999, 361, 156-163.	3.0	53
65	The tryptophan photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) binds multiple AHRs and induces multiple CYP1 genes via AHR2 in zebrafish. Chemico-Biological Interactions, 2009, 181, 447-454.	4.0	53
66	Expression of P-glycoprotein in killifish (Fundulus heteroclitus) exposed to environmental xenobiotics. Aquatic Toxicology, 2002, 59, 237-251.	4.0	52
67	Uroporphyrin Accumulation Associated with Cytochrome P4501A Induction in Fish Hepatoma Cells Exposed to Aryl Hydrocarbon Receptor Agonists, Including 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Planar Chlorobiphenyls. Archives of Biochemistry and Biophysics, 1996, 329, 163-174.	3.0	51
68	Redox stress and signaling during vertebrate embryonic development: Regulation and responses. Seminars in Cell and Developmental Biology, 2018, 80, 17-28.	5.0	50
69	Development of the morpholino gene knockdown technique in Fundulus heteroclitus: A tool for studying molecular mechanisms in an established environmental model. Aquatic Toxicology, 2008, 87, 289-295.	4.0	47
70	Transcriptomic assessment of resistance to effects of an aryl hydrocarbon receptor (AHR) agonist in embryos of Atlantic killifish (Fundulus heteroclitus) from a marine Superfund site. BMC Genomics, 2011, 12, 263.	2.8	47
71	Genetic variation at aryl hydrocarbon receptor (AHR) loci in populations of Atlantic killifish (Fundulus heteroclitus) inhabiting polluted and reference habitats. BMC Evolutionary Biology, 2014, 14, 6.	3.2	47
72	Distinct Roles of Two Zebrafish AHR Repressors (AHRRa and AHRRb) in Embryonic Development and Regulating the Response to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Toxicological Sciences, 2009, 110, 426-441.	3.1	46

#	Article	IF	CITATIONS
73	The Transcriptional Response to Oxidative Stress during Vertebrate Development: Effects of tert-Butylhydroquinone and 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. PLoS ONE, 2014, 9, e113158.	2.5	46
74	In Silico Identification of an Aryl Hydrocarbon Receptor Antagonist with Biological Activity In Vitro and In Vivo. Molecular Pharmacology, 2014, 86, 593-608.	2.3	45
75	Regulation of Ahr signaling by Nrf2 during development: Effects of Nrf2a deficiency on PCB126 embryotoxicity in zebrafish (Danio rerio). Aquatic Toxicology, 2015, 167, 157-171.	4.0	45
76	Identification and functional characterization of hypoxia-inducible factor 2? from the estuarine teleost,Fundulus heteroclitus: Interaction of HIF-2? with two ARNT2 splice variants. The Journal of Experimental Zoology, 2002, 294, 17-29.	1.4	44
77	Functional characterization of a full length pregnane X receptor, expression in vivo, and identification of PXR alleles, in Zebrafish (Danio rerio). Aquatic Toxicology, 2013, 142-143, 447-457.	4.0	44
78	cDNA Cloning and Characterization of a High Affinity Aryl Hydrocarbon Receptor in a Cetacean, the Beluga, Delphinapterus leucas. Toxicological Sciences, 2001, 64, 41-56.	3.1	43
79	The Landscape of Extreme Genomic Variation in the Highly Adaptable Atlantic Killifish. Genome Biology and Evolution, 2017, 9, 659-676.	2.5	43
80	Aryl hydrocarbon receptor function in early vertebrates:. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1998, 120, 67-75.	0.5	42
81	Role of DNA methylation of AHR1 and AHR2 promoters in differential sensitivity to PCBs in Atlantic Killifish, Fundulus heteroclitus. Aquatic Toxicology, 2011, 101, 288-294.	4.0	42
82	Cytochrome P4501A1 expression, polychlorinated biphenyls and hydroxylated metabolites, and adipocyte size of bottlenose dolphins from the Southeast United States. Aquatic Toxicology, 2008, 86, 397-412.	4.0	40
83	Developmental Expression of the Nfe2-Related Factor (Nrf) Transcription Factor Family in the Zebrafish, Danio rerio. PLoS ONE, 2013, 8, e79574.	2.5	40
84	Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus) Tj ETQq0 0 0	rgBT /Ove 4.0	erlock 10 Tf 50
85	Halogenated aromatic hydrocarbon-mediated porphyrin accumulation and induction of cytochrome P4501A in chicken embryo hepatocytes. Biochemical Pharmacology, 1997, 53, 373-384.	4.4	39
86	The Active Form of Human Aryl Hydrocarbon Receptor (AHR) Repressor Lacks Exon 8, and Its Pro ¹⁸⁵ and Ala ¹⁸⁵ Variants Repress both AHR and Hypoxia-Inducible Factor. Molecular and Cellular Biology, 2009, 29, 3465-3477.	2.3	38
87	Perspectives on zebrafish as a model in environmental toxicology. Fish Physiology, 2010, , 367-439.	0.8	38
88	Functional properties of the four Atlantic salmon (Salmo salar) aryl hydrocarbon receptor type 2 (AHR2) isoforms. Aquatic Toxicology, 2008, 86, 121-130.	4.0	37
89	Brominated flame retardants and organochlorine contaminants in winter flounder, harp and hooded seals, and North Atlantic right whales from the Northwest Atlantic Ocean. Marine Pollution Bulletin, 2010, 60, 1160-1169.	5.0	37
90	Biological effects of 6-formylindolo[3,2-b]carbazole (FICZ) in vivo are enhanced by loss of CYP1A function in an Ahr2-dependent manner. Biochemical Pharmacology, 2016, 110-111, 117-129.	4.4	37

#	Article	IF	CITATIONS
91	Phylogenetic distribution of the Ah receptor in non-mammalian species: implications for dioxin toxicity and Ah receptor evolution. Chemosphere, 1992, 25, 931-937.	8.2	35
92	Cytochrome P4501A Induction and Porphyrin Accumulation in PLHC-1 Fish Cells Exposed to Sediment and Oil Shale Extracts. Archives of Environmental Contamination and Toxicology, 2000, 38, 59-69.	4.1	35
93	Reduced cytochrome P4501A activity and recovery from oxidative stress during subchronic benzo[a]pyrene and benzo[e]pyrene treatment of rainbow trout. Toxicology and Applied Pharmacology, 2011, 254, 1-7.	2.8	35
94	Estrogen responses in killifish (Fundulus heteroclitus) from polluted and unpolluted environments are site- and gene-specific. Aquatic Toxicology, 2010, 99, 291-299.	4.0	34
95	Effects of short-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on microRNA expression in zebrafish embryos. Toxicology and Applied Pharmacology, 2012, 264, 262-273.	2.8	34
96	Gene Knockdown by Morpholino-Modified Oligonucleotides in the Zebrafish (Danio rerio) Model: Applications for Developmental Toxicology. Methods in Molecular Biology, 2012, 889, 51-71.	0.9	34
97	Uptake of waterborne 3,3′,4,4′-tetrachlorobiphenyl and organ and cell-specific induction of cytochrome P4501A in adult and larval fathead minnow Pimephales promelas. Aquatic Toxicology, 1994, 28, 147-167.	4.0	33
98	Towards molecular understanding of species differences in dioxin sensitivity: initial characterization of Ah receptor cDNAs in birds and an amphibian. Marine Environmental Research, 2000, 50, 51-56.	2.5	33
99	Organohalogen contaminants and metabolites in cerebrospinal fluid and cerebellum gray matter in short-beaked common dolphins and Atlantic white-sided dolphins from the western North Atlantic. Environmental Pollution, 2009, 157, 2345-2358.	7.5	33
100	Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor. Aquatic Toxicology, 2015, 159, 198-207.	4.0	33
101	GLUCOCORTICOID–XENOBIOTIC INTERACTIONS: DEXAMETHASONE-MEDIATED POTENTIATION OF CYTOCHROME P4501A INDUCTION BY β-NAPHTHOFLAVONE IN A FISH HEPATOMA CELL LINE (PLHC-1). Environmental Toxicology and Chemistry, 1997, 16, 900.	4.3	31
102	Mechanistic research in aquatic toxicology: Perspectives and future directions. Aquatic Toxicology, 2011, 105, 67-71.	4.0	30
103	Delayed effects of developmental exposure to low levels of the aryl hydrocarbon receptor agonist 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) on adult zebrafish behavior. NeuroToxicology, 2016, 52, 134-143.	3.0	29
104	Naturally produced halogenated dimethyl bipyrroles bind to the aryl hydrocarbon receptor and induce cytochrome P4501A and porphyrin accumulation in chicken embryo hepatocytes. Environmental Toxicology and Chemistry, 2003, 22, 1622-1631.	4.3	28
105	Biological Activity and Physicochemical Parameters of Marine Halogenated Natural Products 2,3,3′,4,4′,5,5′-Heptachloro-1′-Methyl-1,2′-Bipyrrole and2,4,6-Tribromoanisole. Archives of Environn Contamination and Toxicology, 2004, 48, 1-9.	n en tal	28
106	Cytochrome P4501A Induction in Avian Hepatocyte Cultures: A Promising Approach for Predicting the Sensitivity of Avian Species to Toxic Effects of Halogenated Aromatic Hydrocarbons. Toxicology and Applied Pharmacology, 1996, 141, 214-230.	2.8	28
107	Estrogen receptor-related receptors in the killifish Fundulus heteroclitus: diversity, expression, and estrogen responsiveness. Journal of Molecular Endocrinology, 2006, 37, 105-120.	2.5	27

1.1 27

#	Article	IF	CITATIONS
109	A Review of the Functional Roles of the Zebrafish Aryl Hydrocarbon Receptors. Toxicological Sciences, 2020, 178, 215-238.	3.1	27
110	Comparison of two bioassays, a fish liver cell line (PLHC-1) and a midge (Chironomus riparius), in monitoring freshwater sediments. Aquatic Toxicology, 1998, 44, 47-67.	4.0	26
111	Glucocorticoidâ€xenobiotic interactions: Dexamethasoneâ€mediated potentiation of cytochrome P4501A induction by βâ€naphthoflavone in a fish hepatoma cell line (PLHCâ€1). Environmental Toxicology and Chemistry, 1997, 16, 900-907.	4.3	25
112	A fish hepatoma cell line (PLHC-1) as a tool to study cytotoxicity and CYP1A induction properties of cellulose and wood chip extracts. Chemosphere, 1998, 36, 2921-2932.	8.2	25
113	Developmental exposure to valproic acid alters the expression of microRNAs involved in neurodevelopment in zebrafish. Neurotoxicology and Teratology, 2013, 40, 46-58.	2.4	25
114	The aryl hydrocarbon receptor: A predominant mediator for the toxicity of emerging dioxin-like compounds. Journal of Hazardous Materials, 2022, 426, 128084.	12.4	25
115	The evolution of aryl hydrocarbon signaling proteins: diversity of ARNT isoforms among fish species. Marine Environmental Research, 2000, 50, 39-44.	2.5	24
116	In vitro metabolism of polychlorinated biphenyl congeners by beluga whale (Delphinapterus leucas) and pilot whale (Globicephala melas) and relationship to cytochrome P450 expression. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 2000, 126, 267-284.	0.5	24
117	Neuroanatomy of the Subadult and Fetal Brain of the Atlantic Whiteâ€sided Dolphin (<i>Lagenorhynchus acutus</i>) from in Situ Magnetic Resonance Images. Anatomical Record, 2007, 290, 1459-1479.	1.4	24
118	Differential sensitivity to pro-oxidant exposure in two populations of killifish (Fundulus) Tj ETQq0 0 0 rgBT /Over	lock 10 Tf !	50,382 Td (h 24
119	Induction of cytochrome P-450E (P-450IA1) by 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF) in the marine fish scup (Stenotomus chrysops). Marine Environmental Research, 1989, 28, 61-65.	2.5	23
120	Cytochrome P450 diversity and induction by gorgonian allelochemicals in the marine gastropod Cyphoma gibbosum. BMC Ecology, 2010, 10, 24.	3.0	23
121	Aryl hydrocarbon receptor (AHR) in the cnidarian Nematostella vectensis: comparative expression, protein interactions, and ligand binding. Development Genes and Evolution, 2014, 224, 13-24.	0.9	23
122	Naturally Occurring Marine Brominated Indoles Are Aryl Hydrocarbon Receptor Ligands/Agonists. Chemical Research in Toxicology, 2015, 28, 1176-1185.	3.3	23
123	Specific Ligand Binding Domain Residues Confer Low Dioxin Responsiveness to AHR1β of <i>Xenopus laevis</i> . Biochemistry, 2013, 52, 1746-1754.	2.5	22
124	Knockdown of a Zebrafish Aryl Hydrocarbon Receptor Repressor (AHRRa) Affects Expression of Genes Related to Photoreceptor Development and Hematopoiesis. Toxicological Sciences, 2014, 139, 381-395.	3.1	22
125	cDNA cloning and characterization of an aryl hydrocarbon receptor from the harbor seal (Phoca) Tj ETQq1 1 0.73	84314 rgB⊺ 4.0	「/Qverlock]
126	Proteomic identification, cDNA cloning and enzymatic activity of glutathione S-transferases from the generalist marine gastropod, Cyphoma gibbosum. Archives of Biochemistry and Biophysics, 2008, 478, 7-17.	3.0	21

#	Article	IF	CITATIONS
127	Relationships among the cell cycle, cell proliferation, and aryl hydrocarbon receptor expression in PLHC-1 cells. Aquatic Toxicology, 2002, 58, 201-213.	4.0	20
128	Cloning and analysis of the CYP1A promoter from the atlantic killifish (Fundulus heteroclitus). Marine Environmental Research, 2004, 58, 119-124.	2.5	20
129	Volumetric Neuroimaging of the Atlantic Whiteâ€Sided Dolphin (<i>Lagenorhynchus acutus</i>) Brain from in situ Magnetic Resonance Images. Anatomical Record, 2008, 291, 263-282.	1.4	20
130	Molecular and Functional Properties of the Atlantic Cod (<i>Gadus morhua</i>) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a. Environmental Science & Technology, 2020, 54, 1033-1044.	10.0	19
131	Developmental Neurotoxicity of the Harmful Algal Bloom Toxin Domoic Acid: Cellular and Molecular Mechanisms Underlying Altered Behavior in the Zebrafish Model. Environmental Health Perspectives, 2020, 128, 117002.	6.0	19
132	Serum withdrawal leads to reduced aryl hydrocarbon receptor expression and loss of cytochrome P4501A inducibility in PLHC-1 cells. Biochemical Pharmacology, 2002, 63, 1405-1414.	4.4	16
133	Sequence and functional characterization of hypoxia-inducible factors, HIF1α, HIF2αa, and HIF3α, from the estuarine fish, <i>Fundulus heteroclitus</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R412-R425.	1.8	16
134	cDNA cloning of an aryl hydrocarbon receptor from Baikal seals (Phoca sibirica). Marine Environmental Research, 2002, 54, 285-289.	2.5	15
135	The role of multixenobiotic transporters in predatory marine molluscs as counter-defense mechanisms against dietary allelochemicals. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2010, 152, 288-300.	2.6	14
136	The liver transcriptome of suckermouth armoured catfish (Pterygoplichthys anisitsi, Loricariidae): Identification of expansions in defensome gene families. Marine Pollution Bulletin, 2017, 115, 352-361.	5.0	14
137	Biochemical Warfare on the Reef: The Role of Glutathione Transferases in Consumer Tolerance of Dietary Prostaglandins. PLoS ONE, 2010, 5, e8537.	2.5	14
138	A reverse transcription-polymerase chain reaction (RT-PCR) approach for cloning Ah receptors from diverse vertebrate species: Partial sequence of an Ah receptor from the teleost Fundulus heteroclitus. Marine Environmental Research, 1996, 42, 13-17.	2.5	13
139	Gonadal feminization and halogenated environmental contaminants in common terns (Sterna) Tj ETQq1 1 0.7843 Ecotoxicology, 2003, 12, 125-140.	314 rgBT / 2.4	Overlock 10 13
140	An Aryl Hydrocarbon Receptor from the Salamander <i>Ambystoma mexicanum</i> Exhibits Low Sensitivity to 2,3,7,8-Tetrachlorodibenzo <i>-p</i> -dioxin. Environmental Science & Technology, 2015, 49, 6993-7001.	10.0	13
141	Ryanodine receptor and FK506 binding protein 1 in the Atlantic killifish (Fundulus heteroclitus): A phylogenetic and population-based comparison. Aquatic Toxicology, 2017, 192, 105-115.	4.0	13
142	Low Inducibility of CYP1A Activity by Polychlorinated Biphenyls (PCBs) in Flounder (Platichthys) Tj ETQq0 0 0 rgB ⁻ 1998, 43, 161-171.	Г /Overloc 3.1	k 10 Tf 50 14 12
143	Development and characterization of polyclonal antibodies against the aryl hydrocarbon receptor protein family (AHR1, AHR2, and AHR repressor) of Atlantic killifish Fundulus heteroclitus. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2006, 142, 85-94.	2.6	12
144	Chapter 7 Xenobiotic receptors in fish: Structural and functional diversity and evolutionary insights. Biochemistry and Molecular Biology of Fishes, 2005, 6, 191-228.	0.5	11

#	Article	IF	CITATIONS
145	Transcriptomic analysis of Anabas testudineus and its defensive mechanisms in response to persistent organic pollutants exposure. Science of the Total Environment, 2019, 669, 621-630.	8.0	11
146	Casting a wide net: use of diverse model organisms to advance toxicology. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	11
147	Receptor-Mediated Mechanisms of Toxicity. , 2008, , 235-272.		10
148	Developing tools for risk assessment in protected species: Relative potencies inferred from competitive binding of halogenated aromatic hydrocarbons to aryl hydrocarbon receptors from beluga (Delphinapterus leucas) and mouse. Aquatic Toxicology, 2010, 100, 238-245.	4.0	10
149	Integrating Monitoring and Genetic Methods To Infer Historical Risks of PCBs and DDE to Common and Roseate Terns Nesting Near the New Bedford Harbor Superfund Site (Massachusetts, USA). Environmental Science & Technology, 2016, 50, 10226-10235.	10.0	10
150	CHRONIC RETENE EXPOSURE CAUSES SUSTAINED INDUCTION OF CYP1A ACTIVITY AND PROTEIN IN RAINBOW TROUT (ONCORHYNCHUS MYKISS). Environmental Toxicology and Chemistry, 1998, 17, 2347.	4.3	10
151	Molecular adaptation to high pressure in cytochrome P450 1A and aryl hydrocarbon receptor systems of the deep-sea fish Coryphaenoides armatus. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 155-165.	2.3	9
152	Developmental Exposure to Domoic Acid Disrupts Startle Response Behavior and Circuitry in Zebrafish. Toxicological Sciences, 2021, 182, 310-326.	3.1	9
153	Induction of CYP1A and porphyrin accumulation in fish hepatoma cells (PLHC-1) exposed to sediment or water from a PCB-contaminated lake (Lake Kernaala, Finland). Marine Environmental Research, 1998, 46, 379-384.	2.5	8
154	Determination of individual porphyrins in rodent urine using high-performance liquid chromatography following clean-up by anion-exchange chromatography. Biomedical Applications, 1991, 563, 363-368.	1.7	7
155	Species-specific relative AHR1 binding affinities of 2,3,4,7,8-pentachlorodibenzofuran explain avian species differences in its relative potency. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 161, 21-25.	2.6	7
156	Altered lipid homeostasis in a PCB-resistant Atlantic killifish (Fundulus heteroclitus) population from New Bedford Harbor, MA, U.S.A Aquatic Toxicology, 2019, 210, 30-43.	4.0	7
157	Evolutionary and Physiological Perspectives on Ah Receptor Function and Dioxin Toxicity. , 2005, , 559-602.		6
158	Naturally produced halogenated dimethyl bipyrroles bind to the aryl hydrocarbon receptor and induce cytochrome P4501A and porphyrin accumulation in chicken embryo hepatocytes. Environmental Toxicology and Chemistry, 2003, 22, 1622-31.	4.3	6
159	Biomaterials Science Can Offer a Valuable Second Opinion on Nature's Plastic Malady. Environmental Science & Technology, 2022, 56, 1475-1477.	10.0	5
160	The aryl hydrocarbon receptor in early vertebrates. Marine Environmental Research, 1998, 46, 41-44.	2.5	4
161	Characterization of the Aryl Hydrocarbon Receptor (AhR) Pathway in <i>Anabas testudineus</i> and Mechanistic Exploration of the Reduced Sensitivity of AhR2a. Environmental Science & amp; Technology, 2019, 53, 12803-12811.	10.0	4

Evolutionary concepts can benefit both fundamental research and applied research in toxicology (A) Tj ETQq000 rgBT /Overlock 10 Tf $\frac{1}{2}$

#	Article	IF	CITATIONS
163	Ah receptors and the mechanism of dioxin toxicity: insights from homology and phylogeny. , 1996, , 9-27.		4
164	Developmental Regulation of Nuclear Factor Erythroid-2 Related Factors (<i>nrfs</i>) by AHR1b in Zebrafish (<i>Danio rerio</i>). Toxicological Sciences, 2019, 167, 536-545.	3.1	3
165	An aryl hydrocarbon receptor from the caecilian Gymnopis multiplicata suggests low dioxin affinity in the ancestor of all three amphibian orders. General and Comparative Endocrinology, 2020, 299, 113592.	1.8	3
166	Effect of hexachlorobenzene on the specific binding of 2,3,7,8,-TCDD to the hepatic receptor. Chemosphere, 1986, 15, 1691-1698.	8.2	2
167	Does an ARYL HYDROCARBON RECEPTOR (AHR)-like molecule exist in earthworms? Some implications for immunity Pedobiologia, 2003, 47, 646-650.	1.2	2
168	Alan Poland, MS, MD: 1940–2020 Poisons as Probes of Biological Function. Chemical Research in Toxicology, 2021, 34, 1-4.	3.3	2
169	Nematostella vectensis exhibits an enhanced molecular stress response upon co-exposure to highly weathered oil and surface UV radiation. Marine Environmental Research, 2022, 175, 105569.	2.5	2
170	Differential expression of CYP1A1 and CYP1A2, but not of ahr and arnt, in guinea pig adrenal and liver. Endocrine Research, 1998, 24, 631-632.	1.2	1
171	Molecular characterization and tissue-specific expression of the aryl hydrocarbon receptor in the Beluga, Delphinapterus leucas. Marine Environmental Research, 2000, 50, 77.	2.5	1
172	Interaction of fish aryl hydrocarbon receptor paralogs (AHR1 and AHR2) with the retinoblastoma protein. Aquatic Toxicology, 2009, 94, 47-55.	4.0	1
173	Aryl hydrocarbon receptorâ€mediated activity of gasâ€phase ambient air derived from passive sampling and an in vitro bioassay. Environmental Toxicology and Chemistry, 2019, 38, 748-759.	4.3	1
174	NATURALLY PRODUCED HALOGENATED DIMETHYL BIPYRROLES BIND TO THE ARYL HYDROCARBON RECEPTOR AND INDUCE CYTOCHROME P4501A AND PORPHYRIN ACCUMULATION IN CHICKEN EMBRYO HEPATOCYTES. Environmental Toxicology and Chemistry, 2003, 22, 1622.	4.3	1
175	Studies on the Role of the Ah Receptor in Hexachlorobenzene-Induced Porphyria. Annals of the New York Academy of Sciences, 1987, 514, 333-334.	3.8	0