Hyoungil Kim

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9268180/hyoung-il-kim-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

47 3,320 27 50 h-index g-index citations papers 5.66 3,962 13.3 50 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
47	Solar-to-hydrogen Peroxide Conversion of Photocatalytic Carbon Dots With Anthraquinone: Unveiling the Dual Role of Surface Functionalities. <i>Applied Catalysis B: Environmental</i> , 2022 , 121379	21.8	O
46	Low-temperature hydrogenation of nanodiamond as a strategy to fabricate sp-hybridized nanocarbon as a high-performance persulfate activator. <i>Applied Catalysis B: Environmental</i> , 2022 , 12158	£1.8	O
45	Evaluation of thermal properties and acetaldehyde adsorption performance of sustainable composites using waste wood and biochar. <i>Environmental Research</i> , 2021 , 196, 110910	7.9	6
44	Hand-ground fullerene-nanodiamond composite for photosensitized water treatment and photodynamic cancer therapy. <i>Journal of Colloid and Interface Science</i> , 2021 , 587, 101-109	9.3	4
43	Synergistic effect of Sn doping and hydrogenation on hematite electrodes for photoelectrochemical water oxidation. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 6592-6602	7.8	1
42	Ag(I) ions working as a hole-transfer mediator in photoelectrocatalytic water oxidation on WO film. <i>Nature Communications</i> , 2020 , 11, 967	17.4	34
41	Highly durable photoelectrochemical H2O2 production via dual photoanode and cathode processes under solar simulating and external bias-free conditions. <i>Energy and Environmental Science</i> , 2020 , 13, 1730-1742	35.4	37
40	Spontaneous oxidation of arsenite on platinized TiO2 through activating molecular oxygen under ambient aqueous condition. <i>Applied Catalysis B: Environmental</i> , 2020 , 260, 118146	21.8	9
39	Surface and bulk modification for advanced electrode design in photoelectrochemical water splitting. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 5793-5815	6.7	10
38	Single-photon-driven up-/down-conversion nanohybrids for in vivo mercury detection and real-time tracking. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1668-1677	13	6
37	Electrochemical oxidation of organics in sulfate solutions on boron-doped diamond electrode: Multiple pathways for sulfate radical generation. <i>Applied Catalysis B: Environmental</i> , 2019 , 254, 156-165	21.8	45
36	Titanium dioxide surface modified with both palladium and fluoride as an efficient photocatalyst for the degradation of urea. <i>Separation and Purification Technology</i> , 2019 , 209, 580-587	8.3	12
35	Minireview: Selective production of hydrogen peroxide as a clean oxidant over structurally tailored carbon nitride photocatalysts. <i>Catalysis Today</i> , 2019 , 335, 55-64	5.3	38
34	Surface-loaded metal nanoparticles for peroxymonosulfate activation: Efficiency and mechanism reconnaissance. <i>Applied Catalysis B: Environmental</i> , 2019 , 241, 561-569	21.8	124
33	The Myth of Visible Light Photocatalysis Using Lanthanide Upconversion Materials. <i>Environmental Science & Environmental Scien</i>	10.3	34
32	Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride. <i>Applied Catalysis B: Environmental</i> , 2018 , 229, 121-129	21.8	96
31	Surface-modified polymer nanofiber membrane for high-efficiency microdust capturing. <i>Chemical Engineering Journal</i> , 2018 , 339, 204-213	14.7	46

(2014-2018)

30	oxoanion and submerged plasma irradiation process. <i>Journal of Environmental Management</i> , 2018 , 206, 77-84	7.9	10
29	Exploring the Role of Persulfate in the Activation Process: Radical Precursor Versus Electron Acceptor. <i>Environmental Science & Environmental Science</i>	10.3	184
28	Temperature-boosted photocatalytic H production and charge transfer kinetics on TiO under UV and visible light. <i>Photochemical and Photobiological Sciences</i> , 2016 , 15, 1247-1253	4.2	14
27	Robust Co-catalytic Performance of Nanodiamonds Loaded on WO3 for the Decomposition of Volatile Organic Compounds under Visible Light. <i>ACS Catalysis</i> , 2016 , 6, 8350-8360	13.1	81
26	Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts. <i>Energy and Environmental Science</i> , 2016 , 9, 1063-1073	35.4	111
25	Anodic TiO2 nanotube layer directly formed on the inner surface of Ti pipe for a tubular photocatalytic reactor. <i>Applied Catalysis A: General</i> , 2016 , 521, 174-181	5.1	9
24	Dual-Color Emissive Upconversion Nanocapsules for Differential Cancer Bioimaging In Vivo. <i>ACS Nano</i> , 2016 , 10, 1512-21	16.7	130
23	Boosting up the Low Catalytic Activity of Silver for H2 Production on Ag/TiO2 Photocatalyst: Thiocyanate as a Selective Modifier. <i>ACS Catalysis</i> , 2016 , 6, 821-828	13.1	133
22	Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. <i>Energy and Environmental Science</i> , 2016 , 9, 411-433	35.4	414
21	Scaffold-Like Titanium Nitride Nanotubes with a Highly Conductive Porous Architecture as a Nanoparticle Catalyst Support for Oxygen Reduction. <i>ACS Catalysis</i> , 2016 , 6, 3914-3920	13.1	42
20	Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Compounds. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	361
19	Plasmon-Enhanced Sub-Bandgap Photocatalysis via Triplet-Triplet Annihilation Upconversion for Volatile Organic Compound Degradation. <i>Environmental Science & Environmental Sc</i>	1 2·3	45
18	Dual-functional photocatalysis using a ternary hybrid of TiO2 modified with graphene oxide along with Pt and fluoride for H2-producing water treatment. <i>Journal of Catalysis</i> , 2015 , 330, 387-395	7.3	47
17	To What Extent Can Surface Morphology Influence the Photoelectrochemical Performance of Au:WO3 Electrodes?. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 1271-1279	3.8	19
16	Squaraine-sensitized composite of a reduced graphene oxide/TiO2 photocatalyst: Latacking as a new method of dye anchoring. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 232-239	13	21
15	Self-assembled TiO2 agglomerates hybridized with reduced-graphene oxide: A high-performance hybrid photocatalyst for solar energy conversion. <i>Chemical Engineering Journal</i> , 2015 , 262, 409-416	14.7	26
14	N-doped TiO2 nanotubes coated with a thin TaOxNy layer for photoelectrochemical water splitting: dual bulk and surface modification of photoanodes. <i>Energy and Environmental Science</i> , 2015 , 8, 247-257	35.4	131
13	Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell. <i>Scientific Reports</i> , 2014 , 4, 7450	4.9	52

12	Platinum-like Behavior of Reduced Graphene Oxide as a Cocatalyst on TiO2 for the Efficient Photocatalytic Oxidation of Arsenite. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 185-190	11	101
11	Graphene oxide embedded into TiO2 nanofiber: Effective hybrid photocatalyst for solar conversion. <i>Journal of Catalysis</i> , 2014 , 309, 49-57	7.3	71
10	Promoting water photooxidation on transparent WO3 thin films using an alumina overlayer. <i>Energy and Environmental Science</i> , 2013 , 6, 3732	35.4	113
9	Graphitic domain layered titania nanotube arrays for separation and shuttling of solar-driven electrons. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 203-207	13	6
8	Implementation of Ag nanoparticle incorporated WO3 thin film photoanode for hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 2117-2125	6.7	22
7	Chemical-free growth of metal nanoparticles on graphene oxide sheets under visible light irradiation. <i>RSC Advances</i> , 2012 , 2, 2205	3.7	27
6	Solar Photoconversion Using Graphene/TiO2 Composites: Nanographene Shell on TiO2 Core versus TiO2 Nanoparticles on Graphene Sheet. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 1535-1543	3.8	272
5	A strong electronic coupling between graphene nanosheets and layered titanate nanoplates: a soft-chemical route to highly porous nanocomposites with improved photocatalytic activity. <i>Small</i> , 2012 , 8, 1038-48	11	109
4	Optimal Ag concentration for H2 production via Ag:TiO2 nanocomposite thin film photoanode. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 3056-3065	6.7	38
3	Enhanced Photocatalytic and Photoelectrochemical Activity in the Ternary Hybrid of CdS/TiO2/WO3 through the Cascadal Electron Transfer. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 9797	- 3 9805	221
2	Recent advances in materials for and applications of tripletEriplet annihilation-based upconversion. <i>Journal of Materials Chemistry C</i> ,	7.1	5
1	Revisiting the Role of Peroxymonosulfate in TiO2-Mediated Photocatalytic Oxidation: Dependence of Kinetic Enhancement on Target Substrate and Surface Platinization. ACS ES&T Engineering,		1