

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9267868/publications.pdf Version: 2024-02-01

Υιτιανι

#	Article	IF	CITATIONS
1	Explainable Diabetic Retinopathy Detection and Retinal Image Generation. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 44-55.	3.9	29
2	Hybrid Variation-Aware Network for Angle-Closure Assessment in AS-OCT. IEEE Transactions on Medical Imaging, 2022, 41, 254-265.	5.4	10
3	Imaging of vascular abnormalities in ocular surface disease. Survey of Ophthalmology, 2022, 67, 31-51.	1.7	11
4	Graph-Based Region and Boundary Aggregation for Biomedical Image Segmentation. IEEE Transactions on Medical Imaging, 2022, 41, 690-701.	5.4	30
5	Uncertainty-guided graph attention network for parapneumonic effusion diagnosis. Medical Image Analysis, 2022, 75, 102217.	7.0	13
6	An Annotation-Free Restoration Network for Cataractous Fundus Images. IEEE Transactions on Medical Imaging, 2022, 41, 1699-1710.	5.4	28
7	Attentional Mechanisms and Improved Residual Networks for Diabetic Retinopathy Severity Classification. Journal of Healthcare Engineering, 2022, 2022, 1-10.	1.1	4
8	Unsupervised Multi-View CNN for Salient View Selection and 3D Interest Point Detection. International Journal of Computer Vision, 2022, 130, 1210-1227.	10.9	8
9	Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognition, 2021, 110, 107332.	5.1	214
10	A Decision Tree-Initialised Neuro-fuzzy Approach for Clinical Decision Support. Artificial Intelligence in Medicine, 2021, 111, 101986.	3.8	40
11	CS <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:msup><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math> -Net: Deep learning segmentation of curvilinear structures in medical imaging. Medical Image Analysis, 2021, 67, 101874.	7.0	166
12	Structure and Illumination Constrained GAN for Medical Image Enhancement. IEEE Transactions on Medical Imaging, 2021, 40, 3955-3967.	5.4	60
13	Guided Adversarial Adaptation Network for Retinal and Choroidal Layer Segmentation. Lecture Notes in Computer Science, 2021, , 82-91.	1.0	0
14	TransBridge: A Lightweight Transformer for Left Ventricle Segmentation inÂEchocardiography. Lecture Notes in Computer Science, 2021, , 63-72.	1.0	16
15	Cross-Domain Depth Estimation Network for 3D Vessel Reconstruction in OCT Angiography. Lecture Notes in Computer Science, 2021, , 13-23.	1.0	3
16	ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model. IEEE Transactions on Medical Imaging, 2021, 40, 928-939.	5.4	137
17	Memory-Assisted Dual-End Adaptation Network For Choroid Segmentation In Multi-Domain Optical Coherence Tomography. , 2021, , .		0
18	3D Vessel Reconstruction In Oct-Angiography Via Depth Map Estimation. , 2021, , .		5

Υίτιαν

#	Article	IF	CITATIONS
19	Restoration Of Cataract Fundus Images Via Unsupervised Domain Adaptation. , 2021, , .		12
20	Angle-closure assessment in anterior segment OCT images via deep learning. Medical Image Analysis, 2021, 69, 101956.	7.0	28
21	Interwoven texture-based description of interest points in images. Pattern Recognition, 2021, 113, 107821.	5.1	2
22	Quantification of Increased Corneal Subbasal Nerve Tortuosity in Dry Eye Disease and Its Correlation With Clinical Parameters. Translational Vision Science and Technology, 2021, 10, 26.	1.1	15
23	Weighing features of lung and heart regions for thoracic disease classification. BMC Medical Imaging, 2021, 21, 99.	1.4	5
24	Keratoconus detection of changes using deep learning of colour-coded maps. BMJ Open Ophthalmology, 2021, 6, e000824.	0.8	26
25	Outer Retinal Layer Thickness Changes in White Matter Hyperintensity and Parkinson's Disease. Frontiers in Neuroscience, 2021, 15, 741651.	1.4	4
26	Superficial Macula Capillary Complexity Changes Are Associated With Disability in Neuromyelitis Optica Spectrum Disorders. Frontiers in Neurology, 2021, 12, 724946.	1.1	8
27	A nested parallel multiscale convolution for cerebrovascular segmentation. Medical Physics, 2021, 48, 7971-7983.	1.6	6
28	Spatial Uncertainty-Aware Semi-Supervised Crowd Counting. , 2021, , .		48
29	Automated Segmentation of Trigeminal Nerve and Cerebrovasculature in MR-Angiography Images by Deep Learning. Frontiers in Neuroscience, 2021, 15, 744967.	1.4	5
30	Retinal Vascular Network Topology Reconstruction and Artery/Vein Classification via Dominant Set Clustering. IEEE Transactions on Medical Imaging, 2020, 39, 341-356.	5.4	46
31	An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study. Diabetologia, 2020, 63, 419-430.	2.9	88
32	Imaging of Nonlinear and Dynamic Functional Brain Connectivity Based on EEG Recordings With the Application on the Diagnosis of Alzheimer's Disease. IEEE Transactions on Medical Imaging, 2020, 39, 1571-1581.	5.4	22
33	Dense Dilated Network With Probability Regularized Walk for Vessel Detection. IEEE Transactions on Medical Imaging, 2020, 39, 1392-1403.	5.4	96
34	A Density and Reliability Guided Aggregation for the Assessment of Vessels and Nerve Fibres Tortuosity. IEEE Access, 2020, 8, 139199-139211.	2.6	7
35	Corneal nerve tortuosity grading via ordered weighted averagingâ€based feature extraction. Medical Physics, 2020, 47, 4983-4996	1.6	18
36	Automatic Tortuosity Estimation of Nerve Fibers and Retinal Vessels in Ophthalmic Images. Applied Sciences (Switzerland), 2020, 10, 4788.	1.3	1

Υιτια

#	Article	IF	CITATIONS
37	Introducing the GEV Activation Function for Highly Unbalanced Data to Develop COVID-19 Diagnostic Models. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2776-2786.	3.9	33
38	Deep Learning with Skip Connection Attention for Choroid Layer Segmentation in OCT Images. , 2020, 2020, 1641-1645.		7
39	Multi-scale U-net with Edge Guidance for Multimodal Retinal Image Deformable Registration. , 2020, 2020, 1360-1363.		10
40	Automatic Segmentation and Visualization of Choroid in OCT with Knowledge Infused Deep Learning. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3408-3420.	3.9	34
41	Sparse-Gan: Sparsity-Constrained Generative Adversarial Network for Anomaly Detection in Retinal OCT Image. , 2020, , .		50
42	Open-Set OCT Image Recognition with Synthetic Learning. , 2020, , .		5
43	Speckle reduction of OCT via super resolution reconstruction and its application on retinal layer segmentation. Artificial Intelligence in Medicine, 2020, 106, 101871.	3.8	12
44	Automated Tortuosity Analysis of Nerve Fibers in Corneal Confocal Microscopy. IEEE Transactions on Medical Imaging, 2020, 39, 2725-2737.	5.4	29
45	Regression of Instance Boundary by Aggregated CNN and GCN. Lecture Notes in Computer Science, 2020, , 190-207.	1.0	14
46	Cycle Structure and Illumination Constrained GAN for Medical Image Enhancement. Lecture Notes in Computer Science, 2020, , 667-677.	1.0	11
47	CNN-GCN Aggregation Enabled Boundary Regression for Biomedical Image Segmentation. Lecture Notes in Computer Science, 2020, , 352-362.	1.0	26
48	Open-Appositional-Synechial Anterior Chamber Angle Classification in AS-OCT Sequences. Lecture Notes in Computer Science, 2020, , 715-724.	1.0	5
49	Classification of Retinal Vessels into Artery-Vein in OCT Angiography Guided by Fundus Images. Lecture Notes in Computer Science, 2020, , 117-127.	1.0	6
50	High signal-to-noise ratio reconstruction of low bit-depth optical coherence tomography using deep learning. Journal of Biomedical Optics, 2020, 25, .	1.4	15
51	Digital resolution enhancement in low transverse sampling optical coherence tomography angiography using deep learning. OSA Continuum, 2020, 3, 1664.	1.8	8
52	Automated Corneal Nerve Segmentation Using Weighted Local Phase Tensor. Communications in Computer and Information Science, 2020, , 459-469.	0.4	0
53	Unsupervised Multi-view CNN for Salient View Selection of 3D Objects and Scenes. Lecture Notes in Computer Science, 2020, , 454-470.	1.0	1
54	Construction of Quantitative Indexes for Cataract Surgery Evaluation Based on Deep Learning. Lecture Notes in Computer Science, 2020, , 195-205.	1.0	0

Υιτια

#	Article	IF	CITATIONS
55	Cerebrovascular Segmentation in MRA via Reverse Edge Attention Network. Lecture Notes in Computer Science, 2020, , 66-75.	1.0	14
56	Reconstruction and Quantification of 3D Iris Surface for Angle-Closure Glaucoma Detection in Anterior Segment OCT. Lecture Notes in Computer Science, 2020, , 704-714.	1.0	3
57	Corrections to "Automated Tortuosity Analysis of Nerve Fibers in Corneal Confocal Microscopy― IEEE Transactions on Medical Imaging, 2020, 39, 3758-3758.	5.4	1
58	Automated retinal lesion detection via image saliency analysis. Medical Physics, 2019, 46, 4531-4544.	1.6	10
59	Pixel Reconstruction For Speckle Reduction In 3D Optical Coherence Tomography Of Retina. , 2019, , .		0
60	Speckle Reduction in Optical Coherence Tomography via Super-Resolution Reconstruction. , 2019, 2019, 5589-5592.		2
61	CE-Net: Context Encoder Network for 2D Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2019, 38, 2281-2292.	5.4	1,266
62	A Dementia Classification Framework Using Frequency and Time-Frequency Features Based on EEG Signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 826-835.	2.7	76
63	Topology Reconstruction of Tree-Like Structure in Images via Structural Similarity Measure and Dominant Set Clustering. , 2019, , .		10
64	On the Application of Preaggregation Functions to Fuzzy Pattern Tree. , 2019, , .		1
65	Automated Iris Segmentation from Anterior Segment OCT Images with Occludable Angles via Local Phase Tensor. , 2019, 2019, 4745-4749.		4
66	Anterior Chamber Angles Classification in Anterior Segment OCT Images via Multi-Scale Regions Convolutional Neural Networks. , 2019, 2019, 849-852.		11
67	A mobilized automatic human body measure system using neural network. Multimedia Tools and Applications, 2019, 78, 11291-11311.	2.6	5
68	CS-Net: Channel and Spatial Attention Network for Curvilinear Structure Segmentation. Lecture Notes in Computer Science, 2019, , 721-730.	1.0	131
69	Exploiting Reliability-Guided Aggregation for the Assessment of Curvilinear Structure Tortuosity. Lecture Notes in Computer Science, 2019, , 12-20.	1.0	4
70	SkrGAN: Sketching-Rendering Unconditional Generative Adversarial Networks for Medical Image Synthesis. Lecture Notes in Computer Science, 2019, , 777-785.	1.0	31
71	Network Pruning for OCT Image Classification. Lecture Notes in Computer Science, 2019, , 121-129.	1.0	2
72	Dictionary Learning Informed Deep Neural Network with Application to OCT Images. Lecture Notes in Computer Science, 2019, , 1-8.	1.0	0

Υιτια

#	Article	IF	CITATIONS
73	2D transform-domain Fourier filters for eliminating microsaccade noise in en face optical coherence tomography angiography. , 2019, , .		1
74	Automatic 2-D/3-D Vessel Enhancement in Multiple Modality Images Using a Weighted Symmetry Filter. IEEE Transactions on Medical Imaging, 2018, 37, 438-450.	5.4	91
75	Logistic Regression of Point Matches for Accurate Transformation Estimation. , 2018, , .		0
76	A Wavelet-Based Correlation Analysis Framework to Study Cerebromuscular Activity in Essential Tremor. Complexity, 2018, 2018, 1-15.	0.9	6
77	Dominant-Set-Based Consensus For Fuzzy C-Means Clustering Ensemble. , 2018, , .		0
78	Uniqueness-Driven Saliency Analysis forÂAutomated Lesion Detection withÂApplications to Retinal Diseases. Lecture Notes in Computer Science, 2018, , 109-118.	1.0	17
79	Retinal Artery and Vein Classification via Dominant Sets Clustering-Based Vascular Topology Estimation. Lecture Notes in Computer Science, 2018, , 56-64.	1.0	31
80	Retinal vascular segmentation using superpixelâ€based line operator and its application to vascular topology estimation. Medical Physics, 2018, 45, 3132-3146.	1.6	11
81	Automatic Detection and Distinction of Retinal Vessel Bifurcations and Crossings in Colour Fundus Photography. Journal of Imaging, 2018, 4, 4.	1.7	15
82	Retinal vascular topology estimation via dominant sets clustering. , 2018, , .		4
83	Saliency driven vasculature segmentation with infinite perimeter active contour model. Neurocomputing, 2017, 259, 201-209.	3.5	53
84	Spatial statistical modelling of capillary non-perfusion in the retina. Scientific Reports, 2017, 7, 16792.	1.6	11
85	Intensity and Compactness Enabled Saliency Estimation for Leakage Detection in Diabetic and Malarial Retinopathy. IEEE Transactions on Medical Imaging, 2017, 36, 51-63.	5.4	67
86	Tracking Nonlinear Correlation for Complex Dynamic Systems Using a Windowed Error Reduction Ratio Method. Complexity, 2017, 2017, 1-14.	0.9	5
87	Region-based saliency estimation for 3D shape analysis and understanding. Neurocomputing, 2016, 197, 1-13.	3.5	16
88	Automated Detection of Leakage in Fluorescein Angiography Images with Application to Malarial Retinopathy. Scientific Reports, 2015, 5, 10425.	1.6	32
89	Automated Detection of Vessel Abnormalities on Fluorescein Angiogram in Malarial Retinopathy. Scientific Reports, 2015, 5, 11154.	1.6	17
90	Automated Vessel Segmentation Using Infinite Perimeter Active Contour Model with Hybrid Region Information with Application to Retinal Images. IEEE Transactions on Medical Imaging, 2015, 34, 1797-1807.	5.4	337

Υιτιάν

#	Article	IF	CITATIONS
91	Retinal Vessel Segmentation: An Efficient Graph Cut Approach with Retinex and Local Phase. PLoS ONE, 2015, 10, e0122332.	1.1	78
92	Automatic choroid layer segmentation in OCT images via context efficient adaptive network. Applied Intelligence, 0, , .	3.3	2