Amelie Saintonge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9267806/publications.pdf

Version: 2024-02-01

30047 25770 12,062 121 54 108 citations h-index g-index papers 121 121 121 4998 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	EDGE: What shapes the relationship between H <scp>i</scp> and stellar observables in faint dwarf galaxies?. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5672-5681.	1.6	14
2	The Cold Interstellar Medium of Galaxies in the Local Universe. Annual Review of Astronomy and Astrophysics, 2022, 60, 319-361.	8.1	67
3	SUPER. Astronomy and Astrophysics, 2021, 646, A96.	2.1	25
4	BAT AGN Spectroscopic Survey. XX. Molecular Gas in Nearby Hard-X-Ray-selected AGN Galaxies. Astrophysical Journal, Supplement Series, 2021, 252, 29.	3.0	52
5	xCOLD GASS and xGASS: Radial metallicity gradients and global properties on the star-forming main sequence. Astronomy and Astrophysics, 2021, 649, A39.	2.1	6
6	The HASHTAG Project: The First Submillimeter Images of the Andromeda Galaxy from the Ground. Astrophysical Journal, Supplement Series, 2021, 257, 52.	3.0	5
7	JINGLE – IV. Dust, H i gas, and metal scaling laws in the local Universe. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3668-3687.	1.6	28
8	Galaxy cold gas contents in modern cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2020, 497, 146-166.	1.6	71
9	ALMA observations of CS in NGC 1068: chemistry and excitation. Monthly Notices of the Royal Astronomical Society, 2020, 496, 5308-5329.	1.6	9
10	The CO(3–2)/CO(1–0) Luminosity Line Ratio in Nearby Star-forming Galaxies and Active Galactic Nuclei from xCOLD GASS, BASS, and SLUGS. Astrophysical Journal, 2020, 889, 103.	1.6	29
11	Outflows in star-forming galaxies: Stacking analyses of resolved winds and the relation to their hosts' properties. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3081-3097.	1.6	29
12	xGASS: cold gas content and quenching in galaxies below the star-forming main sequence. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1982-1995.	1.6	34
13	The cosmic abundance of cold gas in the local Universe. Monthly Notices of the Royal Astronomical Society, 2020, 501, 411-418.	1.6	18
14	Centrally concentrated molecular gas driving galactic-scale ionized gas outflows in star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3802-3820.	1.6	6
15	xGASS: H i Fueling of Star Formation in Disk-dominated Galaxies. Astrophysical Journal, 2020, 890, 63.	1.6	32
16	Molecular and Ionized Gas Phases of an AGN-driven Outflow in a Typical Massive Galaxy at zÂâ‰^Â2. Astrophysical Journal, 2019, 871, 37.	1.6	56
17	JINGLE, a JCMT legacy survey of dust and gas for galaxy evolution studies: II. SCUBA-2 850 Î⅓m data reduction and dust flux density catalogues. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4166-4185.	1.6	14
18	PHIBSS2: survey design and <i>z</i> = 0.5 – 0.8 results. Astronomy and Astrophysics, 2019, 622, A105.	2.1	77

#	Article	IF	Citations
19	Sensitivity of dark matter haloes to their accretion histories. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1906-1915.	1.6	19
20	Estimating the Molecular Gas Mass of Low-redshift Galaxies from a Combination of Mid-infrared Luminosity and Optical Properties. Astrophysical Journal, 2019, 887, 172.	1.6	10
21	EDGE: The Origin of Scatter in Ultra-faint Dwarf Stellar Masses and Surface Brightnesses. Astrophysical Journal Letters, 2019, 886, L3.	3.0	47
22	The Effect of Galaxy Interactions on Molecular Gas Properties. Astrophysical Journal, 2018, 868, 132.	1.6	51
23	JINGLE, a JCMT legacy survey of dust and gas for galaxy evolution studies – I. Survey overview and first results. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3497-3519.	1.6	30
24	Cross-calibration of CO- versus dust-based gas masses and assessment of the dynamical mass budget in Herschel-SDSS Stripe82 galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1442-1458.	1.6	23
25	LLAMA: normal star formation efficiencies of molecular gas in the centres of luminous Seyfert galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5658-5679.	1.6	57
26	xGASS: total cold gas scaling relations and molecular-to-atomic gas ratios of galaxies in the local Universe. Monthly Notices of the Royal Astronomical Society, 2018, 476, 875-895.	1.6	261
27	PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions*. Astrophysical Journal, 2018, 853, 179.	1.6	467
28	Galaxy pairs in the SDSS – XIII. The connection between enhanced star formation and molecular gas properties in galaxy mergers. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2591-2604.	1.6	49
29	xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies. Astrophysical Journal, Supplement Series, 2017, 233, 22.	3.0	350
30	Deep CO(1–0) Observations of zÂ=Â1.62 Cluster Galaxies with Substantial Molecular Gas Reservoirs and Normal Star Formation Efficiencies. Astrophysical Journal, 2017, 849, 27.	1.6	58
31	Radiative transfer meets Bayesian statistics: where does a galaxy's [C ii] emission come from?. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3315-3330.	1.6	27
32	How to quench a galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 465, 547-558.	1.6	86
33	Molecular and atomic gas along and across the main sequence of star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1749-1756.	1.6	184
34	HIGHMASS—HIGH H iÂMASS, H i-RICH GALAXIES AT ZÂâ^¼Â0: COMBINED H iÂAND H ₂ OBSERVA Astronomical Journal, 2016, 152, 225.	TIQNS.	10
35	THE PROPERTIES OF THE CIRCUMGALACTIC MEDIUM IN RED AND BLUE GALAXIES: RESULTS FROM THE COS-GASS+COS-HALOS SURVEYS. Astrophysical Journal, 2016, 833, 259.	1.6	60
36	SPATIAL CORRELATION BETWEEN DUST AND Hα EMISSION IN DWARF IRREGULAR GALAXIES*. Astrophysical Journal, 2016, 825, 34.	1.6	6

#	Article	IF	Citations
37	SHIELD: NEUTRAL GAS KINEMATICS AND DYNAMICS. Astrophysical Journal, 2016, 832, 89.	1.6	24
38	The Bluedisk survey: molecular gas distribution and scaling relations in the context of galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1724-1739.	1.6	11
39	The Tully–Fisher relation of COLD GASS Galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3494-3515.	1.6	21
40	SHIELD: COMPARING GAS AND STAR FORMATION IN LOW-MASS GALAXIES. Astrophysical Journal, 2016, 832, 85.	1.6	28
41	HIGH-RESOLUTION IMAGING OF PHIBSS <i>z</i> $\hat{a}^{1}/4$ 2 MAIN-SEQUENCE GALAXIES IN CO <i>J</i> = 1 \hat{a} † 0. Astrophysical Journal, 2015, 809, 175.	1.6	42
42	THE GAS PHASE MASS METALLICITY RELATION FOR DWARF GALAXIES: DEPENDENCE ON STAR FORMATION RATE AND HI GAS MASS. Astrophysical Journal, 2015, 812, 98.	1.6	25
43	CONNECTION BETWEEN THE CIRCUMGALACTIC MEDIUM AND THE INTERSTELLAR MEDIUM OF GALAXIES: RESULTS FROM THE COS-GASS SURVEY. Astrophysical Journal, 2015, 813, 46.	1.6	90
44	ZFIRE: GALAXY CLUSTER KINEMATICS, $H < i > \hat{l} + < / i > STAR FORMATION RATES, AND GAS PHASE METALLICITIES OF XMM-LSS J02182-05102 AT ${z}_{mathrm{cl}}=1.6233$. Astrophysical Journal, 2015, 811, 28.$	1.6	54
45	COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS. Astrophysical Journal, 2015, 800, 20.	1.6	482
46	Cold gas properties of the <i>Herschel </i> Reference Survey. Astronomy and Astrophysics, 2014, 564, A66.	2.1	142
47	HIghMass—HIGH H I MASS, H I-RICH GALAXIES AT <i>>z</i> i>â^¹⁄₄ 0 HIGH-RESOLUTION VLA IMAGING OF UGC 9037 AND UGC 12506. Astronomical Journal, 2014, 148, 69.	1.9	19
48	HIghMass-HIGH H I MASS, H I-RICH GALAXIES AT <i>z</i> â ¹ /4 O SAMPLE DEFINITION, OPTICAL AND Hα IMAGING, AND STAR FORMATION PROPERTIES. Astrophysical Journal, 2014, 793, 40.	1.6	36
49	Star formation in the cluster CLG0218.3-0510 at $z\hat{A}=\hat{A}1.62$ and its large-scale environment: the infrared perspective. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2565-2577.	1.6	42
50	DISTANCE DETERMINATIONS TO SHIELD GALAXIES FROM <i>HUBBLE SPACE TELESCOPE</i> /i>IMAGING. Astrophysical Journal, 2014, 785, 3.	1.6	33
51	The evolution of the dust temperatures of galaxies in the SFR– <i>M</i> _{â^—} plane up to <i>z</i> Â~Â2. Astronomy and Astrophysics, 2014, 561, A86.	2.1	194
52	Cold gas properties of the <i>Herschel </i> Reference Survey. Astronomy and Astrophysics, 2014, 564, A67.	2.1	138
53	THE FAR-INFRARED, UV, AND MOLECULAR GAS RELATION IN GALAXIES UP TO <i>z</i> = 2.5. Astrophysical Journal, 2013, 762, 125.	1.6	44
54	VALIDATION OF THE EQUILIBRIUM MODEL FOR GALAXY EVOLUTION TO <i>>z < /i> ê^1/4 3 THROUGH MOLECULAR GAND DUST OBSERVATIONS OF LENSED STAR-FORMING GALAXIES. Astrophysical Journal, 2013, 778, 2.</i>	\\$ 1.6	205

#	Article	IF	CITATIONS
55	PHIBSS: MOLECULAR GAS, EXTINCTION, STAR FORMATION, AND KINEMATICS IN THE <i>z < /i> = 1.5 STAR-FORMING GALAXY EGS13011166. Astrophysical Journal, 2013, 773, 68.</i>	1.6	78
56	NUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES. Astrophysical Journal, 2013, 771, 63.	1.6	96
57	PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN <i>z</i> \$\frac{1}{4} 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES. Astrophysical Journal, 2013, 768, 74.	1.6	752
58	CAUGHT IN THE ACT: THE ASSEMBLY OF MASSIVE CLUSTER GALAXIES AT < i>z < /i> = 1.62. Astrophysical Journal, 2013, 773, 154.	1.6	58
59	Molecular gas mass functions of normal star-forming galaxies since <i>z</i> Â-ÂÂ3. Astronomy and Astrophysics, 2013, 555, L8.	2.1	27
60	Dust temperature and CO Ââ†' H ₂ conversion factor variations in the SFR- <i>M</i> _{â^—} plane. Astronomy and Astrophysics, 2012, 548, A22.	2.1	123
61	The evolution of the star formation activity per halo mass up to redshift \hat{A} ~1.6 as seen by <i>Herschel </i> i>. Astronomy and Astrophysics, 2012, 537, A58.	2.1	60
62	SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES. Astrophysical Journal, 2012, 753, 114.	1.6	271
63	THE IMPACT OF INTERACTIONS, BARS, BULGES, AND ACTIVE GALACTIC NUCLEI ON STAR FORMATION EFFICIENCY IN LOCAL MASSIVE GALAXIES. Astrophysical Journal, 2012, 758, 73.	1.6	215
64	THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR FORMATION RATE ESTIMATES. Astrophysical Journal, 2012, 745, 182.	1.6	85
65	THE <i> GALEX < /i > ARECIBO SDSS SURVEY. V. THE RELATION BETWEEN THE H I CONTENT OF GALAXIES AND METAL ENRICHMENT AT THEIR OUTSKIRTS. Astrophysical Journal, 2012, 745, 66.</i>	1.6	93
66	A <i>Herschel</i> view of the far-infrared properties of submillimetre galaxies. Astronomy and Astrophysics, 2012, 539, A155.	2.1	232
67	The GALEX Arecibo SDSS Survey - IV. Baryonic mass-velocity-size relations of massive galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1959-1976.	1.6	54
68	COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - III. Comparison with semi-analytic models of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2012, 422, 997-1006.	1.6	39
69	Quantifying the role of bars in the build-up of central mass concentrations in disc galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3486-3501.	1.6	72
70	THE METALLICITY DEPENDENCE OF THE CO â†' H ₂ CONVERSION FACTOR IN <i>z</i> ⩾ 1 STAR-FORMING GALAXIES. Astrophysical Journal, 2012, 746, 69.	1.6	232
71	GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR-MASS PLANE FROM (i) $2 < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 \text{ TO} < i > z < i\rangle \hat{a}^1/4 = 2.5 $	i>â^1/4 1.6	590
72	PACS Evolutionary Probe (PEP) – A <i>Herschel</i> key program. Astronomy and Astrophysics, 2011, 532, A90.	2.1	407

#	Article	IF	Citations
7 3	The effect of environment on star forming galaxies at redshift. Astronomy and Astrophysics, 2011, 532, A145.	2.1	45
74	The effect of environment on star forming galaxies at redshift 1 First insight from PACS (<i>Corrigendum</i>). Astronomy and Astrophysics, 2011, 534, C2.	2.1	2
7 5	THE SURVEY OF H I IN EXTREMELY LOW-MASS DWARFS (SHIELD). Astrophysical Journal Letters, 2011, 739, L22.	3.0	88
76	DETECTION OF OUTFLOWING AND EXTRAPLANAR GAS IN DISKS IN AN ASSEMBLING GALAXY CLUSTER AT $\langle i \rangle z \langle j \rangle = 0.37$. Astrophysical Journal Letters, 2011, 742, L34.	3.0	3
77	DISK GALAXY SCALING RELATIONS IN THE SFI++: INTRINSIC SCATTER AND APPLICATIONS. Astrophysical Journal, 2011, 726, 77.	1.6	24
78	COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - I. Relations between H2, Hâ€fi, stellar content and structural properties. Monthly Notices of the Royal Astronomical Society, 2011, 415, 32-60.	1.6	418
79	COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - II. The non-universality of the molecular gas depletion time-scale. Monthly Notices of the Royal Astronomical Society, 2011, 415, 61-76.	1.6	313
80	THE ARECIBO LEGACY FAST ALFA SURVEY: THE \hat{l}_{\pm} .40 H I SOURCE CATALOG, ITS CHARACTERISTICS AND THEIR IMPACT ON THE DERIVATION OF THE H I MASS FUNCTION. Astronomical Journal, 2011, 142, 170.	1.9	544
81	A CENSUS OF MID-INFRARED-SELECTED ACTIVE GALACTIC NUCLEI IN MASSIVE GALAXY CLUSTERS AT 0 ≲zâ% Astrophysical Journal, 2011, 738, 65.	1.3.	5
82	UGC8802: A MASSIVE DISK GALAXY IN FORMATION. Astrophysical Journal, 2010, 720, 1126-1135.	1.6	19
83	REVERSAL OF FORTUNE: CONFIRMATION OF AN INCREASING STAR FORMATION–DENSITY RELATION IN A CLUSTER AT ⟨i⟩z⟨ i⟩ = 1.62. Astrophysical Journal Letters, 2010, 719, L126-L129.	3.0	187
84	The far-infrared/radio correlation as probed by <i>Herschel</i> . Astronomy and Astrophysics, 2010, 518, L31.	2.1	190
85	PEP: First < i > Herschel < /i > probe of dusty galaxy evolution up to z \sim 3. Astronomy and Astrophysics, 2010, 518, L27.	2.1	65
86	The first <i>Herschel</i> view of the mass-SFR link in high- <i>z</i> galaxies. Astronomy and Astrophysics, 2010, 518, L25.	2.1	222
87	<i>Herschel</i> unveils a puzzling uniformity of distant dusty galaxies. Astronomy and Astrophysics, 2010, 518, L29.	2.1	182
88	A FIRST GLIMPSE INTO THE FAR-IR PROPERTIES OF HIGH- <i>z</i> UV-SELECTED GALAXIES: <i>HERSCHEL</i> /PACS OBSERVATIONS OF <i>z</i> â^1/4 3 LBGS. Astrophysical Journal Letters, 2010, 720, L185-L189.	3.0	36
89	UNVEILING FAR-INFRARED COUNTERPARTS OF BRIGHT SUBMILLIMETER GALAXIES USING PACS IMAGING. Astrophysical Journal Letters, 2010, 720, L144-L148.	3.0	15
90	Evolution of dust temperature of galaxies through cosmic time as seen by Herschelâ* Monthly Notices of the Royal Astronomical Society, 2010, 409, 75-82.	1.6	145

#	Article	IF	CITATIONS
91	Far-infrared properties of submillimeter and optically faint radio galaxies. Astronomy and Astrophysics, 2010, 518, L28.	2.1	75
92	The dust content of high- <i>z</i> submillimeter galaxies revealed by <i>Herschel</i> . Astronomy and Astrophysics, 2010, 518, L154.	2.1	74
93	Dissecting the cosmic infra-red background with <i>Herschel </i> /i>/PEP. Astronomy and Astrophysics, 2010, 518, L30.	2.1	106
94	<i>Herschel</i> FIR counterparts of selected Ly <i>\hat{l}±</i> emitters at <i>z</i> ~ 2.2. Astronomy and Astrophysics, 2010, 519, L4.	2.1	16
95	Star formation in AGN hosts in GOODS-N. Astronomy and Astrophysics, 2010, 518, L26.	2.1	149
96	The star-formation rates of 1.5 < z < 2.5 massive galaxies. Astronomy and Astrophysics, 2010, 518, L24.	2.1	99
97	<i>Herschel</i> deep far-infrared counts through AbellÂ2218 cluster-lens. Astronomy and Astrophysics, 2010, 518, L17.	2.1	19
98	THE HOMOGENEOUS PROPERTIES OF Hα-SELECTED GALAXIES AT (0.05 < <i>>z</i> < 0.15). Astronomical Journal, 2010, 140, 561-576.	1.9	1
99	A SPECTROSCOPICALLY CONFIRMED EXCESS OF 24 $\hat{1}\frac{1}{4}$ m SOURCES IN A SUPER GALAXY GROUP AT <i>>z</i> = 0.3 ENHANCED DUSTY STAR FORMATION RELATIVE TO THE CLUSTER AND FIELD ENVIRONMENT. Astrophysical Journal, 2009, 705, 809-820.	7: 1.6	53
100	THE ARECIBO LEGACY FAST ALFA SURVEY. IX. THE LEO REGION H I CATALOG, GROUP MEMBERSHIP, AND THE H I MASS FUNCTION FOR THE LEO I GROUP. Astronomical Journal, 2009, 138, 338-361.	1.9	63
101	The Importance of AGN in an Assembling Galaxy Cluster. , 2009, , .		O
102	THE ARECIBO LEGACY FAST ALFA SURVEY. VIII. H I SOURCE CATALOG OF THE ANTI-VIRGO REGION AT $\hat{l}' = +25\hat{A}^{\circ}$. Astrophysical Journal, Supplement Series, 2009, 183, 214-224.	3.0	18
103	THE ARECIBO LEGACY FAST ALFA SURVEY. V. THE H I SOURCE CATALOG OF THE ANTI-VIRGO REGION AT δ = +27°. Astronomical Journal, 2008, 135, 588-604.	1.9	43
104	<i>Spitzer</i> /MIPS 24 $\hat{1}$ /4m Observations of Galaxy Clusters: An Increasing Fraction of Obscured Star-forming Members from <i>z</i> = 0.02 to <i>z</i> = 0.83. Astrophysical Journal, 2008, 685, L113-L116.	1.6	81
105	THE ARECIBO LEGACY FAST ALFA SURVEY. VI. SECOND HI SOURCE CATALOG OF THE VIRGO CLUSTER REGION. Astronomical Journal, 2008, 136, 713-724.	1.9	61
106	Geometrical tests of cosmological models. Astronomy and Astrophysics, 2008, 478, 43-55.	2.1	5
107	Geometrical tests of cosmological models. Astronomy and Astrophysics, 2008, 478, 57-69.	2.1	10
108	Geometrical tests of cosmological models. Astronomy and Astrophysics, 2008, 478, 71-81.	2.1	4

#	Article	IF	CITATIONS
109	H l clouds in the proximity of M 33. Astronomy and Astrophysics, 2008, 487, 161-175.	2.1	36
110	The Arecibo Legacy Fast ALFA Survey. IV. Strategies for Signal Identification and Survey Catalog Reliability. Astronomical Journal, 2007, 133, 2087-2096.	1.9	101
111	The Arecibo Legacy Fast ALFA Survey. III. HiSource Catalog of the Northern Virgo Cluster Region. Astronomical Journal, 2007, 133, 2569-2583.	1.9	131
112	Optically Unseen H <scp>i</scp> Detections toward the Virgo Cluster Detected in the Arecibo Legacy Fast ALFA Survey. Astrophysical Journal, 2007, 665, L15-L18.	1.6	40
113	The Arecibo Legacy Fast ALFA Survey. II. Results of Precursor Observations. Astronomical Journal, 2005, 130, 2613-2624.	1.9	76
114	Catalog of Galaxy Morphology in Four Rich Clusters: Luminosity Evolution of Disk Galaxies at 0.33 < z < 0.83. Astrophysical Journal, Supplement Series, 2005, 157, 228-250.	3.0	4
115	The Arecibo Legacy Fast ALFA Survey. I. Science Goals, Survey Design, and Strategy. Astronomical Journal, 2005, 130, 2598-2612.	1.9	636
116	Galaxy Morphology in the Rich Cluster Abell 2390. Astronomical Journal, 2002, 123, 1826-1837.	1.9	1
117	Study of the characteristics of silicon MESA radiation detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 460, 146-158.	0.7	5
118	xGASS: Gas-rich central galaxies in small groups and their connections to cosmic web gas feeding. Monthly Notices of the Royal Astronomical Society, 0, , stx046.	1.6	46
119	Deriving a multivariate $\hat{l}\pm CO$ conversion function using the [CII]/CO(1-0) ratio and its application to molecular gas scaling relations. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	79
120	The prevalence and properties of cold gas inflows and outflows around galaxies in the local Universe. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	31
121	JINGLE V: Dust properties of nearby galaxies derived from hierarchical Bayesian SED fitting. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	15