
Deyun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9267515/publications.pdf Version: 2024-02-01

DEVLIN WANC

#	Article	IF	CITATIONS
1	Effects of Chinese herbal medicinal ingredients on peripheral lymphocyte proliferation and serum antibody titer after vaccination in chicken. International Immunopharmacology, 2004, 4, 975-982.	1.7	180
2	Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules, 2016, 21, 1705.	1.7	133
3	Sulfated modification of epimedium polysaccharide and effects of the modifiers on cellular infectivity of IBDV. Carbohydrate Polymers, 2008, 71, 180-186.	5.1	119
4	Immunoenhancement effect of rehmannia glutinosa polysaccharide on lymphocyte proliferation and dendritic cell. Carbohydrate Polymers, 2013, 96, 516-521.	5.1	104
5	Effect of sulfated astragalus polysaccharide on cellular infectivity of infectious bursal disease virus. International Journal of Biological Macromolecules, 2008, 42, 166-171.	3.6	87
6	Optimization of selenylation conditions for lycium barbarum polysaccharide based on antioxidant activity. Carbohydrate Polymers, 2014, 103, 148-153.	5.1	85
7	Sulfated modification can enhance the adjuvanticity of lentinan and improve the immune effect of ND vaccine. Vaccine, 2009, 27, 660-665.	1.7	79
8	Sulfated modification can enhance the immune-enhancing activity of lycium barbarum polysaccharides. Cellular Immunology, 2010, 263, 219-223.	1.4	79
9	The comparison of antioxidative and hepatoprotective activities of Codonopsis pilosula polysaccharide (CP) and sulfated CP. International Immunopharmacology, 2015, 24, 299-305.	1.7	77
10	Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant to enhance immune responses. Carbohydrate Polymers, 2019, 223, 115128.	5.1	77
11	Modification of lily polysaccharide by selenylation and the immune-enhancing activity. Carbohydrate Polymers, 2016, 142, 73-81.	5.1	75
12	Effect of epimedium polysaccharide-propolis flavone immunopotentiator on immunosuppression induced by cyclophosphamide in chickens. Cellular Immunology, 2013, 281, 37-43.	1.4	74
13	Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity. Carbohydrate Polymers, 2016, 136, 560-569.	5.1	73
14	Ganoderma lucidum polysaccharides encapsulated in liposome as an adjuvant to promote Th1-bias immune response. Carbohydrate Polymers, 2016, 142, 141-148.	5.1	71
15	Rational Design of PLGA Nanoparticle Vaccine Delivery Systems To Improve Immune Responses. Molecular Pharmaceutics, 2019, 16, 5000-5012.	2.3	71
16	Comparative study on adjuvanticity of compound Chinese herbal medicinal ingredients. Vaccine, 2005, 23, 3704-3708.	1.7	67
17	The immunological activity of Lycium barbarum polysaccharides liposome in vitro and adjuvanticity against PCV2 in vivo. International Journal of Biological Macromolecules, 2016, 85, 294-301.	3.6	66
18	Lycium barbarum polysaccharide inhibits the infectivity of Newcastle disease virus to chicken embryo fibroblast. International Journal of Biological Macromolecules, 2010, 46, 212-216.	3.6	61

#	Article	IF	CITATIONS
19	Immuno-enhancing activity of sulfated Auricularia auricula polysaccharides. Carbohydrate Polymers, 2012, 89, 1117-1122.	5.1	61
20	Simple nanoliposomes encapsulating Lycium barbarum polysaccharides as adjuvants improve humoral and cellular immunity in mice. International Journal of Nanomedicine, 2017, Volume 12, 6289-6301.	3.3	56
21	The antioxidative and hepatoprotective effects comparison of Chinese angelica polysaccharide(CAP)and selenizing CAP (sCAP) in CCl4 induced hepatic injury mice. International Journal of Biological Macromolecules, 2017, 97, 46-54.	3.6	54
22	Lentinan-Modified Carbon Nanotubes as an Antigen Delivery System Modulate Immune Response in Vitro and in Vivo. ACS Applied Materials & Interfaces, 2016, 8, 19276-19283.	4.0	52
23	Effects of Astragalus polysaccharide liposome on lymphocyte proliferation in vitro and adjuvanticity in vivo. Carbohydrate Polymers, 2012, 88, 68-74.	5.1	51
24	Optimization on conditions of Lycium barbarum polysaccharides liposome by RSM and its effects on the peritoneal macrophages function. Carbohydrate Polymers, 2015, 117, 215-222.	5.1	51
25	Optimization on condition of glycyrrhetinic acid liposome by RSM and the research of its immunological activity. International Journal of Biological Macromolecules, 2012, 51, 299-304.	3.6	50
26	Activation effect of Ganoderma lucidum polysaccharides liposomes on murine peritoneal macrophages. International Journal of Biological Macromolecules, 2016, 82, 973-978.	3.6	49
27	Optimization of Glycyrrhiza polysaccharide liposome by response surface methodology and its immune activities. International Journal of Biological Macromolecules, 2017, 102, 68-75.	3.6	49
28	The immunological activity of propolis flavonoids liposome on the immune response against ND vaccine. International Journal of Biological Macromolecules, 2012, 51, 400-405.	3.6	48
29	Angelica sinensis polysaccharide encapsulated into PLGA nanoparticles as a vaccine delivery and adjuvant system for ovalbumin to promote immune responses. International Journal of Pharmaceutics, 2019, 554, 72-80.	2.6	48
30	Selenylation modification can enhance immune-enhancing activity of Chinese angelica polysaccharide. Carbohydrate Polymers, 2013, 95, 183-187.	5.1	47
31	Mechanism of Lycium barbarum polysaccharides liposomes on activating murine dendritic cells. Carbohydrate Polymers, 2019, 205, 540-549.	5.1	46
32	Baicalin Inhibits Biofilm Formation and the Quorum-Sensing System by Regulating the MsrA Drug Efflux Pump in Staphylococcus saprophyticus. Frontiers in Microbiology, 2019, 10, 2800.	1.5	44
33	Immunologic synergism with IL-2 and effects of cCHMIs on mRNA expression of IL-2 and IFN-Î ³ in chicken peripheral T lymphocyte. Vaccine, 2006, 24, 7109-7114.	1.7	43
34	Preparation and characterization of Chinese yam polysaccharide PLGA nanoparticles and their immunological activity. International Journal of Pharmaceutics, 2016, 511, 140-150.	2.6	43
35	<p>Cationic polymer modified PLGA nanoparticles encapsulating Alhagi honey polysaccharides as a vaccine delivery system for ovalbumin to improve immune responses</p> . International Journal of Nanomedicine, 2019, Volume 14, 3221-3234.	3.3	43
36	Immunomodulatory effects of Alhagi honey polysaccharides encapsulated into PLGA nanoparticles. Carbohydrate Polymers, 2019, 211, 217-226.	5.1	42

#	Article	IF	CITATIONS
37	Comparison of Bush Sophora Root polysaccharide and its sulfate's anti-duck hepatitis A virus activity and mechanism. Carbohydrate Polymers, 2014, 102, 333-340.	5.1	40
38	Structural characterization of an acidic Epimedium polysaccharide and its immune-enhancement activity. Carbohydrate Polymers, 2016, 138, 134-142.	5.1	40
39	Cubosome nanoparticles potentiate immune properties of immunostimulants. International Journal of Nanomedicine, 2016, Volume 11, 3571-3583.	3.3	39
40	Salidroside liposome formulation enhances the activity of dendritic cells and immune responses. International Immunopharmacology, 2013, 17, 1134-1140.	1.7	38
41	Adjuvant activities of CTAB-modified Polygonatum sibiricum polysaccharide cubosomes on immune responses to ovalbumin in mice. International Journal of Biological Macromolecules, 2020, 148, 793-801.	3.6	37
42	Immunological adjuvant efficacy of glycyrrhetinic acid liposome against Newcastle disease vaccine. Vaccine, 2011, 29, 9611-9617.	1.7	36
43	The antioxidant action and mechanism of selenizing Schisandra chinensis polysaccharide in chicken embryo hepatocyte. International Journal of Biological Macromolecules, 2017, 98, 506-514.	3.6	34
44	Immune-enhancing activity comparison of sulfated ophiopogonpolysaccharide and sulfated jujube polysaccharide. International Journal of Biological Macromolecules, 2013, 52, 212-217.	3.6	33
45	Optimization on preparation condition of epimedium polysaccharide liposome and evaluation of its adjuvant activity. International Journal of Biological Macromolecules, 2012, 50, 207-213.	3.6	32
46	Effects of Selenylation Modification on Immune-Enhancing Activity of Garlic Polysaccharide. PLoS ONE, 2014, 9, e86377.	1.1	32
47	Optimization on preparation conditions of Rehmannia glutinosa polysaccharide liposome and its immunological activity. Carbohydrate Polymers, 2014, 104, 118-126.	5.1	32
48	Effects of selenizing angelica polysaccharide and selenizing garlic polysaccharide on immune function of murine peritoneal macrophage. International Immunopharmacology, 2015, 27, 104-109.	1.7	32
49	The anti-DHAV activities of Astragalus polysaccharide and its sulfate compared with those of BSRPS and its sulfate. Carbohydrate Polymers, 2015, 117, 339-345.	5.1	32
50	Exploring the immunopotentiation of Chinese yam polysaccharide poly(lactic-co-glycolic acid) nanoparticles in an ovalbumin vaccine formulation <i>in vivo</i> . Drug Delivery, 2017, 24, 1099-1111.	2.5	32
51	Optimization of angelica sinensis polysaccharide-loaded Poly (lactic-co-glycolicacid) nanoparticles by RSM and its immunological activity in vitro. International Journal of Biological Macromolecules, 2018, 107, 222-229.	3.6	32
52	Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant for H9N2 vaccine to improve immune responses in chickens compared to Alum and oil-based adjuvants. Veterinary Microbiology, 2020, 251, 108894.	0.8	32
53	The preparation of gypenosides liposomes and its effects on the peritoneal macrophages function in vitro. International Journal of Pharmaceutics, 2014, 460, 248-254.	2.6	31
54	Effects of Chrysanthemum indicum polysaccharide and its phosphate on anti-duck hepatitis a virus and alleviating hepatic injury. International Journal of Biological Macromolecules, 2017, 102, 813-821.	3.6	31

#	Article	IF	CITATIONS
55	Effects of Selenylation Modification on Antioxidative Activities of Schisandra chinensis Polysaccharide. PLoS ONE, 2015, 10, e0134363.	1.1	30
56	Alhagi honey polysaccharides attenuate intestinal injury and immune suppression in cyclophosphamide-induced mice. Food and Function, 2021, 12, 6863-6877.	2.1	28
57	Liposome and epimedium polysaccharide-propolis flavone can synergistically enhance immune effect of vaccine. International Journal of Biological Macromolecules, 2012, 50, 125-130.	3.6	27
58	Development of liposomal Ganoderma lucidum polysaccharide: Formulation optimization and evaluation of its immunological activity. Carbohydrate Polymers, 2015, 117, 510-517.	5.1	27
59	pH-responsive Astragalus polysaccharides-loaded poly(lactic-co-glycolic acid) nanoparticles and their in vitro immunogenicity. International Journal of Biological Macromolecules, 2019, 125, 865-875.	3.6	26
60	Lentinan-Functionalized Graphene Oxide Is an Effective Antigen Delivery System That Modulates Innate Immunity and Improves Adaptive Immunity. ACS Applied Materials & Interfaces, 2020, 12, 39014-39023.	4.0	26
61	Determine the structure of phosphorylated modification of icariin and its antiviral activity against duck hepatitis virus A. BMC Veterinary Research, 2015, 11, 205.	0.7	25
62	Macrophage immunomodulatory activity of the cationic polymer modified PLGA nanoparticles encapsulating Alhagi honey polysaccharide. International Journal of Biological Macromolecules, 2019, 134, 730-739.	3.6	25
63	The Selenylation Modification of Epimedium Polysaccharide and Isatis Root Polysaccharide and the Immune-enhancing Activity Comparison of Their Modifiers. Biological Trace Element Research, 2016, 171, 224-234.	1.9	23
64	Effects of epimedium polysaccharide-propolis flavone oral liquid on mucosal immunity in chickens. International Journal of Biological Macromolecules, 2014, 64, 6-10.	3.6	22
65	The enhanced immune response of PCV-2 vaccine using Rehmannia glutinosa polysaccharide liposome as an adjuvant. International Journal of Biological Macromolecules, 2016, 86, 929-936.	3.6	22
66	Evaluation of optimum conditions for Achyranthes bidentata polysaccharides encapsulated in cubosomes and immunological activity in vitro. International Journal of Biological Macromolecules, 2018, 109, 748-760.	3.6	22
67	<p>The Immunoenhancement Effects of Polyethylenimine-Modified Chinese Yam Polysaccharide-Encapsulated PLGA Nanoparticles as an Adjuvant</p> . International Journal of Nanomedicine, 2020, Volume 15, 5527-5543.	3.3	22
68	Ramulus mori polysaccharide-loaded PLGA nanoparticles and their anti-inflammatory effects in vivo. International Journal of Biological Macromolecules, 2021, 182, 2024-2036.	3.6	22
69	Supplementation of Alhagi honey polysaccharides contributes to the improvement of the intestinal immunity regulating the structure of intestinal flora in mice. Food and Function, 2021, 12, 9693-9707.	2.1	22
70	The Immunological Enhancement Activity of Propolis Flavonoids Liposome <i>In Vitro</i> and <i>In Vivo</i> . Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-8.	0.5	21
71	Rehmannia glutinosa polysaccharide liposome as a novel strategy for stimulating an efficient immune response and their effects on dendritic cells. International Journal of Nanomedicine, 2016, Volume 11, 6795-6808.	3.3	21
72	The inhibitory effect of phosphorylated Codonopsis pilosula polysaccharide on autophagosomes formation contributes to the inhibition of duck hepatitis A virus replication. Poultry Science, 2020, 99, 2146-2156.	1.5	21

#	Article	IF	CITATIONS
73	Optimization of preparation conditions for CTAB-modified Polygonatum sibiricum polysaccharide cubosomes using the response surface methodology and their effects on splenic lymphocytes. International Journal of Pharmaceutics, 2019, 559, 410-419.	2.6	20
74	Bush Sophora Root polysaccharide and its sulfate can scavenge free radicals resulted from duck virus hepatitis. International Journal of Biological Macromolecules, 2014, 66, 186-193.	3.6	19
75	Immune-adjuvant activity of lentinan-modified calcium carbonate microparticles on a H5N1 vaccine. International Journal of Biological Macromolecules, 2020, 163, 1384-1392.	3.6	19
76	The immunological adjuvant activity of gypenosides liposome against Newcastle disease vaccine. International Journal of Biological Macromolecules, 2013, 60, 116-121.	3.6	18
77	In vitro synergistic effect of baicalin with azithromycin against Staphylococcus saprophyticus isolated from francolins with ophthalmia. Poultry Science, 2019, 98, 373-380.	1.5	18
78	Development of an RT-PCR for rabbit hemorrhagic disease virus (RHDV) and the epidemiology of RHDV in three eastern provinces of China. Journal of Virological Methods, 2008, 151, 24-29.	1.0	17
79	Adjuvanticity of epimedium polysaccharide-propolis flavone on inactivated vaccines against AI and ND virus. International Journal of Biological Macromolecules, 2012, 51, 1028-1032.	3.6	17
80	Immunopotentiation of Polysaccharides of Atractylodes macrocephala Koidz-loaded nanostructured lipid carriers as an adjuvant. International Journal of Biological Macromolecules, 2018, 120, 768-774.	3.6	17
81	Lentinan PLGA-stabilized pickering emulsion for the enhanced vaccination. International Journal of Pharmaceutics, 2022, 611, 121348.	2.6	16
82	Triterpenoid saponins from Ziziphus jujuba var. spinosa. Chemistry of Natural Compounds, 2013, 49, 677-681.	0.2	14
83	Effects of Bush Sophora Root polysaccharide and its sulfate on immuno-enhancing of the therapeutic DVH. International Journal of Biological Macromolecules, 2015, 80, 217-224.	3.6	14
84	Preparation of lentinan-calcium carbonate microspheres and their application as vaccine adjuvants. Carbohydrate Polymers, 2020, 245, 116520.	5.1	14
85	PI3KC3-dependent autophagosomes formation pathway is of crucial importance to anti-DHAV activity of Chrysanthemum indicum polysaccharide. Carbohydrate Polymers, 2019, 208, 22-31.	5.1	13
86	<p>Surface-Engineered Cubosomes Serve as a Novel Vaccine Adjuvant to Modulate Innate Immunity and Improve Adaptive Immunity in vivo</p> . International Journal of Nanomedicine, 2020, Volume 15, 8595-8608.	3.3	13
87	Cationic polymer-modified Alhagi honey polysaccharide PLGA nanoparticles as an adjuvant to induce strong and long-lasting immune responses. International Journal of Biological Macromolecules, 2021, 177, 370-382.	3.6	13
88	Fabrication and characterization of Chinese yam polysaccharides PLGA nanoparticles stabilized Pickering emulsion as an efficient adjuvant. International Journal of Biological Macromolecules, 2022, 209, 513-524.	3.6	13
89	Evaluation of optimum conditions for pachyman encapsulated in poly(D,L-lactic acid) nanospheres by response surface methodology and results of a related in vitro study. International Journal of Nanomedicine, 2016, Volume 11, 4891-4904.	3.3	12
90	Replication cycle of duck hepatitis A virus type 1 in duck embryonic hepatocytes. Virology, 2016, 491, 73-78.	1.1	12

#	Article	IF	CITATIONS
91	Anti-DHAV-1 reproduction and immuno-regulatory effects of a flavonoid prescription on duck virus hepatitis. Pharmaceutical Biology, 2017, 55, 1545-1552.	1.3	12
92	Phosphorylation of Icariin Can Alleviate the Oxidative Stress Caused by the Duck Hepatitis Virus A through Mitogen-Activated Protein Kinases Signaling Pathways. Frontiers in Microbiology, 2017, 8, 1850.	1.5	12
93	Immunoenhancement effects of chitosan-modified ginseng stem-leaf saponins-encapsulated cubosomes as an ajuvant. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111799.	2.5	12
94	Adjuvanticity of compound astragalus polysaccharide and sulfated epimedium polysaccharide per os. International Journal of Biological Macromolecules, 2013, 62, 248-253.	3.6	10
95	Assessment of the hepatocyte protective effects of gypenoside and its phosphorylated derivative against DHAV-1 infection on duck embryonic hepatocytes. BMC Veterinary Research, 2019, 15, 134.	0.7	10
96	A Novel Nanomedicine Ameliorates Acute Inflammatory Bowel Disease by Regulating Macrophages and T-Cells. Molecular Pharmaceutics, 2021, 18, 3484-3495.	2.3	10
97	Assessment of a Flavone-Polysaccharide Based Prescription for Treating Duck Virus Hepatitis. PLoS ONE, 2016, 11, e0146046.	1.1	10
98	Glycyrrhiza polysaccharides can improve and prolong the response of chickens to the Newcastle disease vaccine. Poultry Science, 2022, 101, 101549.	1.5	10
99	Melatonin alleviates hippocampal GR inhibition and depression-like behavior induced by constant light exposure in mice. Ecotoxicology and Environmental Safety, 2021, 228, 112979.	2.9	10
100	Optimization on Preparation Condition of Propolis Flavonoids Liposome by Response Surface Methodology and Research of Its Immunoenhancement Activity. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-8.	0.5	9
101	Solomonseal Polysaccharide and Sulfated Codonopsis pilosula Polysaccharide Synergistically Resist Newcastle Disease Virus. PLoS ONE, 2015, 10, e0117916.	1.1	9
102	C-Glucosyl Flavones from Ziziphus jujuba var. spinosa. Chemistry of Natural Compounds, 2015, 51, 247-251.	0.2	9
103	The protective effect of baicalin on duck hepatitis A virus type 1-induced duck hepatic mitochondria dysfunction by activating nuclear erythroid 2-related factor 2/antioxidant responsive element signaling pathway. Poultry Science, 2021, 100, 101032.	1.5	9
104	Assessment of the Effect of Baicalin on Duck Virus Hepatitis. Current Molecular Medicine, 2019, 19, 376-386.	0.6	9
105	Anti-duck virus hepatitis mechanisms of Bush Sophora Root polysaccharide and its sulfate verified by intervention experiments. Virus Research, 2015, 204, 58-67.	1.1	8
106	Administration Routes of Polyethylenimine-Coated PLGA Nanoparticles Encapsulating Angelica Sinensis Polysaccharide Vaccine Delivery System Affect Immune Responses. Molecular Pharmaceutics, 2021, 18, 2274-2284.	2.3	8
107	RAW REHMANNIA RADIX POLYSACCHARIDE CAN EFFECTIVELY RELEASE PEROXIDATIVE INJURY INDUCED BY DUCK HEPATITIS A VIRUS. Tropical Journal of Obstetrics and Gynaecology, 2017, 14, 8-21.	0.3	7
108	Maturation of dendritic cells in vitro and immunological enhancement of mice in vivo by pachyman- and/or OVA-encapsulated poly(D,L-lactic acid) nanospheres. International Journal of Nanomedicine, 2018, Volume 13, 569-583.	3.3	7

#	Article	IF	CITATIONS
109	Adjuvanticity of Ganoderma lucidum polysaccharide liposomes on porcine circovirus type-II in mice. International Journal of Biological Macromolecules, 2019, 141, 1158-1164.	3.6	7
110	A flavone-polysaccharide based prescription attenuates the mitochondrial dysfunction induced by duck hepatitis A virus type 1. PLoS ONE, 2017, 12, e0175495.	1,1	7
111	Chronic corticosterone disrupts the circadian rhythm of CRH expression and m6A RNA methylation in the chicken hypothalamus. Journal of Animal Science and Biotechnology, 2022, 13, 29.	2.1	7
112	The secretion of sIgA and dendritic cells activation in the intestinal of cyclophosphamide-induced immunosuppressed mice are regulated by Alhagi honey polysaccharides. Phytomedicine, 2022, 103, 154232.	2.3	7
113	Polysaccharides of Atractylodes macrocephala Koidz-loaded nanostructured lipid carriers: Optimization on conditions by RSM and immunological activity in vitro. Journal of Drug Delivery Science and Technology, 2018, 44, 305-313.	1.4	6
114	Alhagi honey polysaccharides encapsulated into PLGA nanoparticle-based pickering emulsion as a novel adjuvant to induce strong and long-lasting immune responses. International Journal of Biological Macromolecules, 2022, 202, 130-140.	3.6	6
115	Polyethylenimine-coated PLGA nanoparticles containing Angelica sinensis polysaccharide promote dendritic cells activation and associated molecular mechanisms. International Journal of Biological Macromolecules, 2022, 207, 559-569.	3.6	6
116	Chitosan-modified Phellinus igniarius polysaccharide PLGA nanoparticles ameliorated inflammatory bowel disease. , 2022, 139, 213002.		6
117	Icariin and its phosphorylated derivatives reduce duck hepatitis A virus serotype 1-induced oxidative stress and inflammatory damage in duck embryonic hepatocytes through mitochondrial regulation. Research in Veterinary Science, 2021, 139, 133-139.	0.9	5
118	Optimization on Preparation Conditions of Salidroside Liposome and Its Immunological Activity on PCV-2 in Mice. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-12.	0.5	4
119	Polyethyleneimine modified Pickering emulsion as a novel adjuvant to induce strong and long-lasting immune responses. International Journal of Pharmaceutics, 2022, 619, 121713.	2.6	4
120	Chemical Constituents of the Bark of Ilex urceolatus. Chemistry of Natural Compounds, 2015, 51, 882-885.	0.2	3
121	Iriflophenone Glycosides from Aquilaria sinensis. Chemistry of Natural Compounds, 2016, 52, 834-837.	0.2	2
122	Poly (lactic-co-glycolic acid) nanoparticle-based vaccines delivery systems as a novel adjuvant for H9N2 antigen enhance immune responses. Poultry Science, 2022, 101, 101791.	1.5	2
123	Constant light exposure in early life induces m 6A-mediated inhibition of IGF gene family in the chicken. Journal of Animal Science, 0, , .	0.2	2
124	Evaluation of the Therapeutic Effect of a Flavonoid Prescription against Rabbit Hemorrhagic Disease In Vivo. BioMed Research International, 2019, 2019, 1-10.	0.9	1
125	Comparison of viral distribution in duck hepatitis A virus-infected duckling models established by two different methods. Research in Veterinary Science, 2021, 141, 156-163.	0.9	0
126	Reversal of Azithromycin Resistance in Staphylococcus saprophyticus by Baicalin. Frontiers in Veterinary Science, 2022, 9, 827674.	0.9	0