
Lidiane M Andrade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9267489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and Food Supplements; an Overview. MOJ Food Processing & Technology, 2018, 6, .	0.9	139
2	A novel approach for the production and purification of mannosylerythritol lipids (MEL) by Pseudozyma tsukubaensis using cassava wastewater as substrate. Separation and Purification Technology, 2017, 180, 157-167.	7.9	63
3	Optimizing alternative substrate for simultaneous production of surfactin and 2,3-butanediol by Bacillus subtilis LB5a. Biocatalysis and Agricultural Biotechnology, 2016, 6, 209-218.	3.1	38
4	An overview on the application of genusÂChlorellaÂin biotechnological processes. Journal of Advanced Research in Biotechnology, 2017, 2, 1-9.	0.4	35
5	Ultrafiltration based purification strategies for surfactin produced by <i>Bacillus subtilis</i> <scp>LB5A</scp> using cassava wastewater as substrate. Journal of Chemical Technology and Biotechnology, 2016, 91, 3018-3027.	3.2	24
6	Production of active cassava starch films; effect of adding a biosurfactant or synthetic surfactant. Reactive and Functional Polymers, 2019, 144, 104368.	4.1	23
7	Fruits and vegetable-processing waste: a case study in two markets at Rio de Janeiro, RJ, Brazil. Environmental Science and Pollution Research, 2020, 27, 18530-18540.	5.3	17
8	Amino acids, fatty acids, and peptides in microalgae biomass harvested from phycoremediation of swine wastewaters. Biomass Conversion and Biorefinery, 2022, 12, 869-880.	4.6	16
9	Microalgae for bioremediation of textile wastewater: An overview. MOJ Food Processing & Technology, 2018, 6, .	0.9	16
10	Comparative study of different matrix/solvent systems for the analysis of crude lyophilized microalgal preparations using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2015, 29, 295-303.	1.5	13
11	Chlorella vulgaris phycoremediation at low Cu+2 contents: Proteomic profiling of microalgal metabolism related to fatty acids and CO2 fixation. Chemosphere, 2021, 284, 131272.	8.2	12
12	Response mechanism of mine-isolated fungus <i>Aspergillus niger</i> IOC 4687 to copper stress determined by proteomics. Metallomics, 2019, 11, 1558-1566.	2.4	9
13	RECOVERY OF COPPER AND SILVER OF PRINTED CIRCUIT BOARDS FROM OBSOLETE COMPUTERS BY ONE-STEP ACID LEACHING. Detritus, 2021, , 86-91.	0.9	9
14	Evaluation of amicarbazone toxicity removal through degradation processes based on hydroxyl and sulfate radicals. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 1126-1143.	1.7	8
15	Nonâ€traditional atrazine degradation induced by zeroâ€valentâ€copper: process optimization by the Doehlert experimental design, intermediates detection and toxicity assessment. Journal of Chemical Technology and Biotechnology, 2019, 94, 1156-1164.	3.2	8
16	Copper Recovery from Printed Circuit Boards from Smartphones Through Bioleaching. Minerals, Metals and Materials Series, 2019, , 837-844.	0.4	6
17	Phycoremediation of Copper by Chlorella protothecoides (UTEX 256): Proteomics of Protein Biosynthesis and Stress Response. Biomass, 2022, 2, 116-129.	2.8	3
18	Lipid and protein fingerprinting for Fusarium oxysporum f. sp. cubense strain-level classification. Analytical and Bioanalytical Chemistry, 2017, 409, 6803-6812.	3.7	1

#	Article	IF	CITATIONS
19	Phycoremediation: A Sustainable Biorefinery Approach. Microorganisms for Sustainability, 2021, , 101-140.	0.7	1