Guanyong Su

List of Publications by Citations

Source: https://exaly.com/author-pdf/9267392/guanyong-su-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

100
papers2,811
citations33
h-index49
g-index104
ext. papers3,597
ext. citations9.2
avg, IF5.53
L-index

#	Paper	IF	Citations
100	Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. <i>Environmental Science & Environmental </i>	10.3	295
99	Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes. <i>Environmental Science & Environmental </i>	10.3	138
98	A review on organophosphate Ester (OPE) flame retardants and plasticizers in foodstuffs: Levels, distribution, human dietary exposure, and future directions. <i>Environment International</i> , 2019 , 127, 35-51	l ^{12.9}	107
97	Organophosphate Flame Retardants and Plasticizers in Aqueous Solution: pH-Dependent Hydrolysis, Kinetics, and Pathways. <i>Environmental Science & Technology</i> , 2016 , 50, 8103-11	10.3	88
96	Environmentally Relevant Concentrations of the Flame Retardant Tris(1,3-dichloro-2-propyl) Phosphate Inhibit Growth of Female Zebrafish and Decrease Fecundity. <i>Environmental Science</i> & amp; Technology, 2015, 49, 14579-87	10.3	76
95	In VitroMetabolism of the Flame Retardant Triphenyl Phosphate in Chicken Embryonic Hepatocytes and the Importance of the Hydroxylation Pathway. <i>Environmental Science and Technology Letters</i> , 2015 , 2, 100-104	11	71
94	Occurrence of perfluoroalkyl acids including perfluorooctane sulfonate isomers in Huai River Basin and Taihu Lake in Jiangsu Province, China. <i>Environmental Science & Environmental Science & Environ</i>	10.3	68
93	Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae. <i>Water Research</i> , 2020 , 172, 115475	12.5	68
92	Environmentally relevant organophosphate triesters in herring gulls: In vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay. <i>Toxicology and Applied Pharmacology</i> , 2016 , 308, 59-65	4.6	66
91	Spatial and temporal comparisons of legacy and emerging flame retardants in herring gull eggs from colonies spanning the Laurentian Great Lakes of Canada and United States. <i>Environmental Research</i> , 2015 , 142, 720-30	7.9	60
90	Effects of Tris(1,3-dichloro-2-propyl) Phosphate on Growth, Reproduction, and Gene Transcription of Daphnia magna at Environmentally Relevant Concentrations. <i>Environmental Science & Environmental Science & Technology</i> , 2015 , 49, 12975-83	10.3	56
89	Parental transfer of tris(1,3-dichloro-2-propyl) phosphate and transgenerational inhibition of growth of zebrafish exposed to environmentally relevant concentrations. <i>Environmental Pollution</i> , 2017 , 220, 196-203	9.3	54
88	Dietary intake of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) from fish and meat by residents of Nanjing, China. <i>Environment International</i> , 2012 , 42, 138-43	12.9	54
87	Magnetic biochar catalysts from anaerobic digested sludge: Production, application and environment impact. <i>Environment International</i> , 2019 , 126, 302-308	12.9	51
86	Organophosphate esters (OPEs) in Chinese foodstuffs: Dietary intake estimation via a market basket method, and suspect screening using high-resolution mass spectrometry. <i>Environment International</i> , 2019 , 128, 343-352	12.9	50
85	Identification of trace organic pollutants in freshwater sources in Eastern China and estimation of their associated human health risks. <i>Ecotoxicology</i> , 2011 , 20, 1099-106	2.9	49
84	Dioxin-like potency of HO- and MeO- analogues of PBDEsSthe potential risk through consumption of fish from eastern China. <i>Environmental Science & Environmental Science & Env</i>	10.3	46

(2016-2015)

83	Perfluorinated sulfonate and carboxylate compounds and precursors in herring gull eggs from across the Laurentian Great Lakes of North America: Temporal and recent spatial comparisons and exposure implications. <i>Science of the Total Environment</i> , 2015 , 538, 468-77	10.2	39	
82	Acute Exposure to Tris(1,3-dichloro-2-propyl) Phosphate (TDCIPP) Causes Hepatic Inflammation and Leads to Hepatotoxicity in Zebrafish. <i>Scientific Reports</i> , 2016 , 6, 19045	4.9	39	
81	Liquid chromatography-electrospray-tandem mass spectrometry method for determination of organophosphate diesters in biotic samples including Great Lakes herring gull plasma. <i>Journal of Chromatography A</i> , 2014 , 1374, 85-92	4.5	39	
80	Organophosphate Ester, 2-Ethylhexyl Diphenyl Phosphate (EHDPP), Elicits Cytotoxic and Transcriptomic Effects in Chicken Embryonic Hepatocytes and Its Biotransformation Profile Compared to Humans. <i>Environmental Science & Dischology</i> , 2019 , 53, 2151-2160	10.3	39	
79	Substantially enhanced anaerobic reduction of nitrobenzene by biochar stabilized sulfide-modified nanoscale zero-valent iron: Process and mechanisms. <i>Environment International</i> , 2019 , 131, 105020	12.9	38	
78	Mechanisms of toxicity of hydroxylated polybrominated diphenyl ethers (HO-PBDEs) determined by toxicogenomic analysis with a live cell array coupled with mutagenesis in Escherichia coli. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	38	
77	Effects of tris (2-butoxyethyl) phosphate (TBOEP) on endocrine axes during development of early life stages of zebrafish (Danio rerio). <i>Chemosphere</i> , 2016 , 144, 1920-7	8.4	38	
76	Toxicogenomic mechanisms of 6-HO-BDE-47, 6-MeO-BDE-47, and BDE-47 in E. coli. <i>Environmental Science & Environmental &</i>	10.3	37	
75	Contaminants of emerging concern in Caspian tern compared to herring gull eggs from Michigan colonies in the Great Lakes of North America. <i>Environmental Pollution</i> , 2017 , 222, 154-164	9.3	35	
74	Functional Group-Dependent Screening of Organophosphate Esters (OPEs) and Discovery of an Abundant OPE Bis-(2-ethylhexyl)-phenyl Phosphate in Indoor Dust. <i>Environmental Science & Technology</i> , 2020 , 54, 4455-4464	10.3	35	
73	Determination of organophosphate diesters in urine samples by a high-sensitivity method based on ultra high pressure liquid chromatography-triple quadrupole-mass spectrometry. <i>Journal of Chromatography A</i> , 2015 , 1426, 154-60	4.5	35	
7²	Occurrence of additive brominated flame retardants in aquatic organisms from Tai Lake and Yangtze River in Eastern China, 2009-2012. <i>Chemosphere</i> , 2014 , 114, 340-6	8.4	34	
71	Photolytic degradation products of two highly brominated flame retardants cause cytotoxicity and mRNA expression alterations in chicken embryonic hepatocytes. <i>Environmental Science & Technology</i> , 2014 , 48, 12039-46	10.3	34	
70	Site-specific water quality criteria for aquatic ecosystems: A case study of pentachlorophenol for Tai Lake, China. <i>Science of the Total Environment</i> , 2016 , 541, 65-73	10.2	33	
69	Biomonitoring of organophosphate triesters and diesters in human blood in Jiangsu Province, eastern China: Occurrences, associations, and suspect screening of novel metabolites. <i>Environment International</i> , 2019 , 131, 105056	12.9	33	
68	Halogenated Flame Retardants in Predator and Prey Fish From the Laurentian Great Lakes: Age-Dependent Accumulation and Trophic Transfer. <i>Environmental Science & Description</i> , 2017, 51, 8432-8441	10.3	33	
67	Simultaneous debromination and mineralization of bromophenol in an up-flow electricity-stimulated anaerobic system. <i>Water Research</i> , 2019 , 157, 8-18	12.5	32	
66	Determination of glucuronide conjugates of hydroxyl triphenyl phosphate (OH-TPHP) metabolites in human urine and its use as a biomarker of TPHP exposure. <i>Chemosphere</i> , 2016 , 149, 314-9	8.4	32	

65	Whole-Life-Stage Characterization in the Basic Biology of Daphnia magna and Effects of TDCIPP on Growth, Reproduction, Survival, and Transcription of Genes. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 13967-13975	10.3	31
64	Time-dependent inhibitory effects of Tris(1, 3-dichloro-2-propyl) phosphate on growth and transcription of genes involved in the GH/IGF axis, but not the HPT axis, in female zebrafish. <i>Environmental Pollution</i> , 2017 , 229, 470-478	9.3	30
63	Traditional and emerging organophosphate esters (OPEs) in indoor dust of Nanjing, eastern China: Occurrence, human exposure, and risk assessment. <i>Science of the Total Environment</i> , 2020 , 712, 136494	10.2	30
62	Persistent, bioaccumulative, and toxic properties of liquid crystal monomers and their detection in indoor residential dust. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 ,	11.5	30
61	Time-dependent effects of the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP) on mRNA expression, in vitro and in ovo, reveal optimal sampling times for rapidly metabolized compounds. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 2842-9	3.8	29
60	Enhanced nitrobenzene reduction by modified biochar supported sulfidated nano zerovalent iron: Comparison of surface modification methods. <i>Science of the Total Environment</i> , 2019 , 694, 133701	10.2	28
59	Polybrominated diphenyl ethers and their methoxylated metabolites in anchovy (Coilia sp.) from the Yangtze River Delta, China. <i>Environmental Science and Pollution Research</i> , 2010 , 17, 634-42	5.1	27
58	Maternal transfer, distribution, and metabolism of BDE-47 and its related hydroxylated, methoxylated analogs in zebrafish (Danio rerio). <i>Chemosphere</i> , 2015 , 120, 31-6	8.4	24
57	Establishment of a Target, Suspect, and Functional Group-Dependent Screening Strategy for Organophosphate Esters (OPEs): "Into the Unknown" of OPEs in the Sediment of Taihu Lake, China. <i>Environmental Science & Environmental & Environment</i>	10.3	24
56	CeO grafted with different heteropoly acids for selective catalytic reduction of NO with NH. <i>Journal of Hazardous Materials</i> , 2020 , 382, 121032	12.8	23
55	Liquid Crystal Monomers (LCMs): A New Generation of Persistent Bioaccumulative and Toxic (PBT) Compounds?. <i>Environmental Science & Environmental Scie</i>	10.3	22
54	Facilitated bio-mineralization of N,N-dimethylformamide in anoxic denitrification system: Long-term performance and biological mechanism. <i>Water Research</i> , 2020 , 186, 116306	12.5	22
53	Distribution of flame retardants in smartphones and identification of current-use organic chemicals including three novel aryl organophosphate esters. <i>Science of the Total Environment</i> , 2019 , 693, 133654	10.2	20
52	Multigenerational effects of tris(1,3-dichloro-2-propyl) phosphate on the free-living ciliate protozoa Tetrahymena thermophila exposed to environmentally relevant concentrations and after subsequent recovery. <i>Environmental Pollution</i> , 2016 , 218, 50-58	9.3	18
51	Comparison on the molecular response profiles between nano zinc oxide (ZnO) particles and free zinc ion using a genome-wide toxicogenomics approach. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 17434-42	5.1	18
50	Peroxisome proliferator-activated receptor gamma (PPARDactivation and metabolism disturbance induced by bisphenol A and its replacement analog bisphenol S using in vitro macrophages and in vivo mouse models. <i>Environment International</i> , 2020 , 134, 105328	12.9	18
49	Organophosphate (OP) diesters and a review of sources, chemical properties, environmental occurrence, adverse effects, and future directions. <i>Environment International</i> , 2021 , 155, 106691	12.9	18
48	Sunlight Irradiation of Highly Brominated Polyphenyl Ethers Generates Polybenzofuran Products That Alter Dioxin-responsive mRNA Expression in Chicken Hepatocytes. <i>Environmental Science</i> & amp: Technology, 2016, 50, 2318-27	10.3	17

(2021-2018)

47	Pharmacokinetics and effects of tetrabromobisphenol a (TBBPA) to early life stages of zebrafish (Danio rerio). <i>Chemosphere</i> , 2018 , 190, 243-252	8.4	16
46	Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio). <i>Aquatic Toxicology</i> , 2015 , 169, 196-20	3 ^{5.1}	15
45	Activation of AhR-mediated toxicity pathway by emerging pollutants polychlorinated diphenyl sulfides. <i>Chemosphere</i> , 2016 , 144, 1754-62	8.4	15
44	Mechanisms of toxicity of triphenyltin chloride (TPTC) determined by a live cell reporter array. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 803-11	5.1	15
43	The combination of in silico and in vivo approaches for the investigation of disrupting effects of tris (2-chloroethyl) phosphate (TCEP) toward core receptors of zebrafish. <i>Chemosphere</i> , 2017 , 168, 122-130	8.4	15
42	Cloud Point Extraction of Bisphenol A from Water Utilizing Cationic Surfactant Aliquat 336. <i>Chinese Journal of Analytical Chemistry</i> , 2009 , 37, 1717-1721	1.6	15
41	Dioxin-like activity in sediments from Tai Lake, China determined by use of the H4IIE-luc bioassay and quantification of individual AhR agonists. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 1480-8	5.1	14
40	Factors associated with blooms of cyanobacteria in a large shallow lake, China. <i>Environmental Sciences Europe</i> , 2018 , 30, 27	5	14
39	Nitrate stimulation of N-Methylpyrrolidone biodegradation by Paracoccus pantotrophus: Metabolite mechanism and Genomic characterization. <i>Bioresource Technology</i> , 2019 , 294, 122185	11	13
38	Liquid Crystal Monomers (LCMs) in Sediments: Method Validation and Detection in Sediment Samples from Three Typical Areas. <i>Environmental Science & Environmental Science & En</i>	10.3	13
37	Classification and toxicity mechanisms of novel flame retardants (NFRs) based on whole genome expression profiling. <i>Chemosphere</i> , 2016 , 144, 2150-7	8.4	12
36	In vitro dioxin-like potencies of HO- and MeO-PBDEs and inter-species sensitivity variation in birds. <i>Ecotoxicology and Environmental Safety</i> , 2016 , 126, 202-210	7	12
35	Photolysis of highly brominated flame retardants leads to time-dependent dioxin-responsive mRNA expression in chicken embryonic hepatocytes. <i>Chemosphere</i> , 2018 , 194, 352-359	8.4	12
34	Exposure to tris(1,3-dichloro-2-propyl) phosphate for Two generations decreases fecundity of zebrafish at environmentally relevant concentrations. <i>Aquatic Toxicology</i> , 2018 , 200, 178-187	5.1	12
33	High-Resolution Mass Spectrometry Screening of Emerging Organophosphate Esters (OPEs) in Wild Fish: Occurrence, Species-Specific Difference, and Tissue-Specific Distribution <i>Environmental Science & Environmental Science</i>	10.3	11
32	Isomer-Specific Hexabromocyclododecane (HBCDD) Levels in Top Predator Fish from Across Canada and 36-Year Temporal Trends in Lake Ontario. <i>Environmental Science & Description</i> (2018, 52, 6197-6207)	10.3	10
31	Dietary intake of legacy and emerging halogenated flame retardants using food market basket estimations in Nanjing, eastern China. <i>Environmental Pollution</i> , 2020 , 258, 113737	9.3	10
30	Newly discovered bis-(2-ethylhexyl)-phenyl phosphate (BEHPP) was a ubiquitous contaminant in surface soils from a typical region, South China. <i>Science of the Total Environment</i> , 2021 , 770, 145350	10.2	10

29	Serum concentrations of neonicotinoids, and their associations with lipid molecules of the general residents in Wuxi City, Eastern China. <i>Journal of Hazardous Materials</i> , 2021 , 413, 125235	12.8	10
28	Multigenerational Effects and Demographic Responses of Zebrafish (Danio rerio) Exposed to Organo-Bromine Compounds. <i>Environmental Science & Environmental Science & Environme</i>	10.3	9
27	Towards establishing indicative values for metabolites of organophosphate ester contaminants in human urine. <i>Chemosphere</i> , 2019 , 236, 124348	8.4	9
26	In Vitro Metabolism of Photolytic Breakdown Products of Tetradecabromo-1,4-diphenoxybenzene Flame Retardant in Herring Gull and Rat Liver Microsomal Assays. <i>Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 8335-43	10.3	7
25	Chemical and biological transfer: Which one is responsible for the maternal transfer toxicity of tris(1,3-dichloro-2-propyl) phosphate in zebrafish?. <i>Environmental Pollution</i> , 2018 , 243, 1376-1382	9.3	7
24	Trace analysis of phenolic compounds in water by in situ acetylation coupled with purge and trap-GC/MS. <i>Analytical Methods</i> , 2012 , 4, 2156	3.2	6
23	Industrial Production of Organophosphate Flame Retardants (OPFRs): Big Knowledge Gaps Need to Be Filled?. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2022 , 1	2.7	6
22	Electronic-Waste-Driven Pollution of Liquid Crystal Monomers: Environmental Occurrence and Human Exposure in Recycling Industrial Parks <i>Environmental Science & Environmental Science & Environment</i>	10.3	5
21	F-isoprostanes in Fish mucus: A new, non-invasive method for analyzing a biomarker of oxidative stress. <i>Chemosphere</i> , 2020 , 239, 124797	8.4	5
20	The importance of compound-specific radiocarbon analysis in source identification of polycyclic aromatic hydrocarbons: A critical review. <i>Critical Reviews in Environmental Science and Technology</i> , 2020 , 1-42	11.1	4
19	Elevated concentration and high Diversity of organophosphate esters (OPEs) were Discovered in Sediment from Industrial, and E-Waste Recycling Areas <i>Water Research</i> , 2022 , 217, 118362	12.5	4
18	Determination of Polybrominated Diphenyl Ethers and Their Derivates in Zebrafish Eggs. <i>Chinese Journal of Analytical Chemistry</i> , 2012 , 40, 1698-1702	1.6	3
17	Comprehensively screening of citric acid ester (CAE) plasticizers in Chinese foodstuffs, and the food-based assessment of human exposure risk of CAEs <i>Science of the Total Environment</i> , 2022 , 817, 152933	10.2	3
16	Identifying Citric Acid Esters, a Class of Phthalate Substitute Plasticizers, in Indoor Dust via an Integrated Target, Suspect, and Characteristic Fragment-Dependent Screening Strategy. <i>Environmental Science & Dependent & Dependent Science & Dependent Science & Dependent Science & Dep</i>	10.3	3
15	Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated PAHs, azaarenes, and sulfur / oxygen-containing heterocyclic PAHs) in surface soils from a typical city, south China. <i>Chemosphere</i> , 2021 , 283, 131190	8.4	3
14	New insight on occurrence of liquid crystal monomers: A class of emerging e-waste pollutants in municipal landfill leachate. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127146	12.8	3
13	A Reagent-Free Screening Assay for Evaluation of the Effects of Chemicals on the Proliferation and Morphology of HeLa-GFP Cells. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 322-326	11	2
12	Establishment of a three-step method to evaluate effects of chemicals on development of zebrafish embryo/larvae. <i>Chemosphere</i> , 2017 , 186, 209-217	8.4	2

LIST OF PUBLICATIONS

11	Reactive Flame Retardants: Are They Sarer Replacements?. Environmental Science & Emp; Technology, 2021 , 55, 14477-14479	10.3	2	
10	Experimental determination of octanol-water partition coefficient (K) of 39 liquid crystal monomers (LCMs) by use of the shake-flask method. <i>Chemosphere</i> , 2022 , 287, 132407	8.4	2	
9	Suspect and Nontarget Screening of Known and Unknown Organophosphate Esters (OPEs) in Soil Samples. <i>Journal of Hazardous Materials</i> , 2022 , 129273	12.8	2	
8	Global distribution of ustiloxins in rice and their male-biased hepatotoxicity <i>Environmental Pollution</i> , 2022 , 301, 118992	9.3	1	
7	First insight on in vitro metabolism of three newly identified aryl organophosphate esters via a suspect coupled with nontarget screening approach. <i>Toxicology Letters</i> , 2021 , 348, 73-84	4.4	1	
6	Life Cycle Exposure to Environmentally Relevant Concentrations of Diphenyl Phosphate (DPhP) Inhibits Growth and Energy Metabolism of Zebrafish in a Sex-Specific Manner. <i>Environmental</i> Science & Technology, 2021 , 55, 13122-13131	10.3	1	
5	Identifying active xenobiotics in humans by use of a suspect screening technique coupled with lipidomic analysis. <i>Environment International</i> , 2021 , 157, 106844	12.9	1	
4	Characteristic fragmentations of nitroaromatic compounds (NACs) in Orbitrap HCD and integrated strategy for recognition of NACs in environmental samples <i>Science of the Total Environment</i> , 2022 , 15	55 106²	1	
3	Occurrence, partitioning, and bioaccumulation of an emerging class of PBT substances (polychlorinated diphenyl sulfides) in Chaohu Lake, Southeast China <i>Water Research</i> , 2022 , 218, 1184	98 ^{12.5}	1	
2	Metabolic transformation of environmentally-relevant brominated flame retardants in Fauna: A review <i>Environment International</i> , 2022 , 161, 107097	12.9	O	
1	Occurrence and translocation of ustiloxins in rice false smut-occurred paddy fields, Hubei, China <i>Environmental Pollution</i> , 2022 , 119460	9.3	О	