Michael D Aitken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9267275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Salicylate Stimulates the Degradation of High-Molecular Weight Polycyclic Aromatic Hydrocarbons byPseudomonas saccharophilaP15. Environmental Science & Technology, 1999, 33, 435-439.	10.0	194
2	From Bioavailability Science to Regulation of Organic Chemicals. Environmental Science & Technology, 2015, 49, 10255-10264.	10.0	171
3	Products from the Incomplete Metabolism of Pyrene by Polycyclic Aromatic Hydrocarbon-Degrading Bacteria. Applied and Environmental Microbiology, 2000, 66, 1917-1922.	3.1	151
4	Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environmental Microbiology, 2006, 8, 1736-1745.	3.8	114
5	Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity. Environmental Science & Technology, 2015, 49, 13889-13898.	10.0	87
6	Algiphilus aromaticivorans gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from a culture of the marine dinoflagellate Lingulodinium polyedrum, and proposal of Algiphilaceae fam. nov International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2743-2749.	1.7	70
7	Identification of Anthraquinone-Degrading Bacteria in Soil Contaminated with Polycyclic Aromatic Hydrocarbons. Applied and Environmental Microbiology, 2015, 81, 3775-3781.	3.1	68
8	Response of the bacterial community associated with a cosmopolitan marine diatom to crude oil shows a preference for the biodegradation of aromatic hydrocarbons. Environmental Microbiology, 2016, 18, 1817-1833.	3.8	68
9	Fluoranthene-2,3- and -1,5-diones Are Novel Products from the Bacterial Transformation of Fluoranthene. Environmental Science & amp; Technology, 2001, 35, 917-922.	10.0	64
10	Description of Immundisolibacter cernigliae gen. nov., sp. nov., a high-molecular-weight polycyclic aromatic hydrocarbon-degrading bacterium within the class Gammaproteobacteria, and proposal of Immundisolibacterales ord. nov. and Immundisolibacteraceae fam. nov International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 925-931.	1.7	59
11	Screening Nonionic Surfactants for Enhanced Biodegradation of Polycyclic Aromatic Hydrocarbons Remaining in Soil After Conventional Biological Treatment. Environmental Science & Technology, 2016, 50, 3838-3845.	10.0	58
12	Evaluating the Effects of Bioremediation on Genotoxicity of Polycyclic Aromatic Hydrocarbon-Contaminated Soil Using Genetically Engineered, Higher Eukaryotic Cell Lines. Environmental Science & Technology, 2012, 46, 4607-4613.	10.0	57
13	Surfactant-induced bacterial community changes correlated with increased polycyclic aromatic hydrocarbon degradation in contaminated soil. Applied Microbiology and Biotechnology, 2016, 100, 10165-10177.	3.6	54
14	Effect of Incubation Conditions on the Enrichment of Pyrene-degrading Bacteria Identified by Stable-isotope Probing in an Aged, PAH-contaminated Soil. Microbial Ecology, 2008, 56, 341-349.	2.8	50
15	Turnover Capacity of Coprinus cinereus Peroxidase for Phenol and Monosubstituted Phenols. Biotechnology Progress, 1998, 14, 487-492.	2.6	49
16	Identification of polar transformation products and high molecular weight polycyclic aromatic hydrocarbons (PAHs) in contaminated soil following bioremediation. Science of the Total Environment, 2017, 599-600, 1099-1107.	8.0	44
17	Inactivation of <i>Ascaris suum</i> and Poliovirus in Biosolids under Thermophilic Anaerobic Digestion Conditions. Environmental Science & Technology, 2005, 39, 5804-5809.	10.0	42
18	Polyphasic characterization of four soil-derived phenanthrene-degrading Acidovorax strains and proposal of Acidovorax carolinensis sp. nov Systematic and Applied Microbiology, 2018, 41, 460-472.	2.8	40

MICHAEL D AITKEN

#	Article	IF	CITATIONS
19	DNA-based stable isotope probing coupled with cultivation methods implicates Methylophaga in hydrocarbon degradation. Frontiers in Microbiology, 2014, 5, 76.	3.5	38
20	Inactivation of Escherichia coli O157:H7 during thermophilic anaerobic digestion of manure from dairy cattle. Water Research, 2007, 41, 1659-1666.	11.3	36
21	Association of Growth Substrates and Bacterial Genera with Benzo[<i>a</i>]pyrene Mineralization in Contaminated Soil. Environmental Engineering Science, 2014, 31, 689-697.	1.6	35
22	Rugosibacter aromaticivorans gen. nov., sp. nov., a bacterium within the family Rhodocyclaceae, isolated from contaminated soil, capable of degrading aromatic compounds. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 311-318.	1.7	35
23	Nontarget Analysis Reveals a Bacterial Metabolite of Pyrene Implicated in the Genotoxicity of Contaminated Soil after Bioremediation. Environmental Science & Technology, 2017, 51, 7091-7100.	10.0	34
24	Tracing the Biotransformation of Polycyclic Aromatic Hydrocarbons in Contaminated Soil Using Stable Isotope-Assisted Metabolomics. Environmental Science and Technology Letters, 2018, 5, 103-109.	8.7	34
25	Role of methylotrophs in the degradation of hydrocarbons during the Deepwater Horizon oil spill. ISME Journal, 2014, 8, 2543-2545.	9.8	33
26	Laboratory Evaluation of Thermophilic-Anaerobic Digestion to Produce Class A Biosolids. 2. Inactivation of Pathogens and Indicator Organisms in a Continuous-Flow Reactor Followed by Batch Treatment. Water Environment Research, 2005, 77, 3028-3036.	2.7	30
27	Cultivation-dependent and cultivation-independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments. Frontiers in Microbiology, 2015, 6, 695.	3.5	29
28	Bioavailability of (Geno)toxic Contaminants in Polycyclic Aromatic Hydrocarbon–Contaminated Soil Before and After Biological Treatment. Environmental Engineering Science, 2014, 31, 176-182.	1.6	28
29	Laboratory Evaluation of Thermophilic-Anaerobic Digestion to Produce Class A Biosolids. 1. Stabilization Performance of a Continuous-Flow Reactor at Low Residence Time. Water Environment Research, 2005, 77, 3019-3027.	2.7	24
30	Enrichment of Fusobacteria in Sea Surface Oil Slicks from the Deepwater Horizon Oil Spill. Microorganisms, 2016, 4, 24.	3.6	23
31	Mutagenicity screening of reaction products from the enzyme atalyzed oxidation of phenolic pollutants. Environmental Toxicology and Chemistry, 1994, 13, 1743-1752.	4.3	22
32	A material-balance approach for modeling bacterial chemotaxis to a consumable substrate in the capillary assay. Biotechnology and Bioengineering, 2000, 68, 308-315.	3.3	22
33	Complete Genome Sequence of a Novel Bacterium within the Family <i>Rhodocyclaceae</i> That Degrades Polycyclic Aromatic Hydrocarbons. Genome Announcements, 2015, 3, .	0.8	21
34	Improving Polycyclic Aromatic Hydrocarbon Biodegradation in Contaminated Soil Through Low-Level Surfactant Addition After Conventional Bioremediation. Environmental Engineering Science, 2016, 33, 659-670.	1.6	21
35	Diversity and Abundance of High-Molecular-Weight Azaarenes in PAH-Contaminated Environmental Samples. Environmental Science & Technology, 2017, 51, 14047-14054.	10.0	21
36	Complete Genome Sequence of a Bacterium Representing a Deep Uncultivated Lineage within the <i>Gammaproteobacteria</i> Associated with the Degradation of Polycyclic Aromatic Hydrocarbons. Genome Announcements, 2016, 4, .	0.8	17

MICHAEL D AITKEN

#	Article	IF	CITATIONS
37	Production and characterisation of a marine Halomonas surface-active exopolymer. Applied Microbiology and Biotechnology, 2020, 104, 1063-1076.	3.6	16
38	Using Environmental Simulations to Test the Release of Hazardous Substances from Polymer-Based Products: Are Realism and Pragmatism Mutually Exclusive Objectives?. Materials, 2020, 13, 2709.	2.9	11
39	Biological Treatment of Wastewater from Nitrosophenol Production. Journal of Environmental Engineering, ASCE, 1993, 119, 871-889.	1.4	9
40	Coupling Nitrogen Removal and Anaerobic Digestion for Energy Recovery from Swine Waste Through Nitrification/Denitrification. Environmental Engineering Science, 2015, 32, 741-749.	1.6	7
41	Coupling Nitrogen Removal and Anaerobic Digestion for Energy Recovery from Swine Waste: 2 Nitritation/Anammox. Environmental Engineering Science, 2015, 32, 750-760.	1.6	6
42	Isomer-selective biodegradation of high-molecular-weight azaarenes in PAH-contaminated environmental samples. Science of the Total Environment, 2020, 707, 135503.	8.0	6
43	Identifying bioaugmentation candidates for bioremediation of polycyclic aromatic hydrocarbons in contaminated estuarine sediment of the Elizabeth River, VA, USA. Applied Microbiology and Biotechnology, 2022, , 1.	3.6	4
44	"Clinical―and Evidence-Based Environmental Science and Engineering. Environmental Science & Technology, 2011, 45, 368-369.	10.0	0