
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9267238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chlorine-free electrochemical disinfection using graphene sponge electrodes. Chemical Engineering Journal, 2022, 430, 132772.	12.7	22
2	Electrochemical degradation of per- and polyfluoroalkyl substances (PFAS) using low-cost graphene sponge electrodes. Water Research, 2022, 213, 118148.	11.3	34
3	Electrochemical degradation of antibiotics using flow-through graphene sponge electrodes. Journal of Hazardous Materials, 2022, 431, 128462.	12.4	34
4	Ammonia recovery from anaerobic digester centrate using onsite pilot scale bipolar membrane electrodialysis coupled to membrane stripping. Water Research, 2022, 218, 118504.	11.3	22
5	Functionalization of graphene sponge electrodes with two-dimensional materials for tailored electrocatalytic activity towards specific contaminants of emerging concern. Chemical Engineering Journal, 2022, 446, 137057.	12.7	7
6	Removal of persistent organic contaminants from wastewater using a hybrid electrochemical-granular activated carbon (GAC) system. Journal of Hazardous Materials, 2021, 415, 125557.	12.4	34
7	Graphene-based sponges for electrochemical degradation of persistent organic contaminants. Water Research, 2021, 203, 117492.	11.3	36
8	Manganese oxide coated TiO2 nanotube-based electrode for efficient and selective electrocatalytic sulfide oxidation to colloidal sulfur. Applied Catalysis B: Environmental, 2021, 296, 120383.	20.2	9
9	Facing the Challenge of Poly- and Perfluoroalkyl Substances in Water: Is Electrochemical Oxidation the Answer?. Environmental Science & amp; Technology, 2020, 54, 14815-14829.	10.0	117
10	Advanced Electrochemical Processes for the Elimination of Pharmaceutical Compounds in Contaminated Waters. Handbook of Environmental Chemistry, 2020, , 327-347.	0.4	0
11	Manganese oxide-based porous electrodes for rapid and selective (electro)catalytic removal and recovery of sulfide from wastewater. Applied Catalysis B: Environmental, 2020, 267, 118608.	20.2	23
12	Characterization and comparison of Ti/TiO2-NT/SnO2–SbBi, Ti/SnO2–SbBi and BDD anode for the removal of persistent iodinated contrast media (ICM). Chemosphere, 2020, 253, 126701.	8.2	21
13	Electrochemical removal of sulfide on porous carbon-based flow-through electrodes. Journal of Hazardous Materials, 2019, 375, 19-25.	12.4	19
14	<i>N</i> -Nitrosodimethylamine (NDMA) Degradation by the Ultraviolet/Peroxodisulfate Process. Environmental Science and Technology Letters, 2019, 6, 106-111.	8.7	21
15	Oxidative capacitance of sulfate-based boron-doped diamond electrochemical system. Electrochemistry Communications, 2018, 89, 14-18.	4.7	14
16	Predicting reactivity of model DOM compounds towards chlorine with mediated electrochemical oxidation. Water Research, 2017, 114, 113-121.	11.3	22
17	Predicting scale formation during electrodialytic nutrient recovery. Water Research, 2017, 110, 202-210.	11.3	28
18	Removal of sulfamethoxazole by electrochemically activated sulfate: Implications of chloride addition, Journal of Hazardous Materials, 2017, 333, 242-249	12.4	79

#	Article	IF	CITATIONS
19	Biodegradation of atenolol by an enriched nitrifying sludge: Products and pathways. Chemical Engineering Journal, 2017, 312, 351-359.	12.7	55
20	Assessment of the impact of chloride on the formation of chlorinated by-products in the presence and absence of electrochemically activated sulfate. Chemical Engineering Journal, 2017, 330, 1265-1271.	12.7	58
21	A mechanistic model for electrochemical nutrient recovery systems. Water Research, 2016, 94, 176-186.	11.3	36
22	Sulfate-mediated electrooxidation of X-ray contrast media on boron-doped diamond anode. Water Research, 2016, 94, 128-135.	11.3	50
23	Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water. Environmental Science & amp; Technology, 2015, 49, 11292-11302.	10.0	791
24	Removal of Persistent Organic Contaminants by Electrochemically Activated Sulfate. Environmental Science & Technology, 2015, 49, 14326-14333.	10.0	240
25	Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. Journal of Hazardous Materials, 2015, 283, 551-557.	12.4	241
26	Electrochemical treatment of reverse osmosis concentrate on boron-doped electrodes in undivided and divided cell configurations. Journal of Hazardous Materials, 2014, 279, 111-116.	12.4	33
27	Electrochemical Treatment of Reverse Osmosis Concentrates. , 2014, , 644-651.		1
28	Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt–IrO2, Ti/SnO2–Sb and boron-doped diamond electrodes. Water Research, 2013, 47, 242-250.	11.3	132
29	Removal of the X-ray Contrast Media Diatrizoate by Electrochemical Reduction and Oxidation. Environmental Science & Technology, 2013, 47, 13686-13694.	10.0	45
30	Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH. Water Research, 2012, 46, 6104-6112.	11.3	106
31	Effect of UV and UV/H ₂ O ₂ in the Presence of Chloramines on NDMA Formation Potential of Tramadol. Environmental Science & Technology, 2012, 46, 8356-8364.	10.0	29
32	Assessment of Degradation Byproducts and NDMA Formation Potential during UV and UV/H ₂ O ₂ Treatment of Doxylamine in the Presence of Monochloramine. Environmental Science & Technology, 2012, 46, 12904-12912.	10.0	24
33	Reductive electrochemical remediation of emerging and regulated disinfection byproducts. Water Research, 2012, 46, 1705-1714.	11.3	78
34	Dehalogenation of Iodinated X-ray Contrast Media in a Bioelectrochemical System. Environmental Science & Technology, 2011, 45, 782-788.	10.0	43
35	Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes. Water Research, 2011, 45, 1579-1586.	11.3	140
36	Electrochemical degradation of the β-blocker metoprolol by Ti/Ru0.7Ir0.3O2 and Ti/SnO2-Sb electrodes. Water Research, 2011, 45, 3205-3214.	11.3	72

#	Article	IF	CITATIONS
37	Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes. Water Research, 2011, 45, 4951-4959.	11.3	152
38	Recent trends in the liquid chromatography–mass spectrometry analysis of organic contaminants in environmental samples. Journal of Chromatography A, 2010, 1217, 4004-4017.	3.7	216
39	Second interlaboratory exercise on non-steroidal anti-inflammatory drug analysis in environmental aqueous samples. Talanta, 2010, 81, 1189-1196.	5.5	45
40	Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white-rot fungus Trametes versicolor. Water Research, 2010, 44, 521-532.	11.3	94
41	Characterization of intermediate products of solar photocatalytic degradation of ranitidine at pilot-scale. Chemosphere, 2010, 79, 368-376.	8.2	42
42	Determination of pharmaceuticals in sewage sludge by pressurized liquid extraction (PLE) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analytical and Bioanalytical Chemistry, 2009, 393, 1685-1695.	3.7	153
43	Complementary mass spectrometry and bioassays for evaluating pharmaceutical-transformation products in treatment of drinking water and wastewater. TrAC - Trends in Analytical Chemistry, 2009, 28, 562-580.	11.4	57
44	Solar photocatalytic degradation of persistent pharmaceuticals at pilot-scale: Kinetics and characterization of major intermediate products. Applied Catalysis B: Environmental, 2009, 89, 255-264.	20.2	145
45	Evidencing Generation of Persistent Ozonation Products of Antibiotics Roxithromycin and Trimethoprim. Environmental Science & Technology, 2009, 43, 6808-6815.	10.0	60
46	Fate and removal of pharmaceuticals and illicit drugs in conventional and membrane bioreactor wastewater treatment plants and by riverbank filtration. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 3979-4003.	3.4	140
47	Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research, 2009, 43, 831-841.	11.3	979
48	Occurrence and Fate of Pharmaceuticals and Illicit Drugs Under Water Scarcity. Handbook of Environmental Chemistry, 2009, , 197-228.	0.4	3
49	Identification and structural characterization of biodegradation products of atenolol and glibenclamide by liquid chromatography coupled to hybrid quadrupole time-of-flight and quadrupole ion trap mass spectrometry. Journal of Chromatography A, 2008, 1210, 142-153.	3.7	90
50	Emerging Contaminants in Waste Waters: Sources and Occurrence. , 2008, , 1-35.		5
51	Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Research, 2008, 42, 3601-3610.	11.3	600
52	Erratum to Membrane Bioreactor (MBR) as an Advanced Wastewater Treatment Technology. , 2008, , 275-280.		0
53	Emerging Contaminants in Waste Waters: Sources and Occurrence. Handbook of Environmental Chemistry, 2008, , 1-35.	0.4	15
54	Membrane Bioreactor (MBR) as an Advanced Wastewater Treatment Technology. Handbook of Environmental Chemistry, 2008, , 37-101.	0.4	55

#	Article	IF	CITATIONS
55	Chapter 4.2 Removal of pharmaceuticals by advanced treatment technologies. Comprehensive Analytical Chemistry, 2007, , 451-474.	1.3	5
56	Advanced mass spectrometric methods applied to the study of fate and removal of pharmaceuticals in wastewater treatment. TrAC - Trends in Analytical Chemistry, 2007, 26, 1132-1144.	11.4	97
57	Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Analytical and Bioanalytical Chemistry, 2007, 387, 1365-1377.	3.7	444
58	Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor. Analytical and Bioanalytical Chemistry, 2007, 388, 207-214.	3.7	97
59	Membrane Bioreactor (MBR) as an Advanced Wastewater Treatment Technology. , 2007, , 37-101.		24