
Shawn D Hingtgen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9266769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 655-664.	1.7	991
2	Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4822-4827.	3.3	425
3	Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas. Nature Neuroscience, 2012, 15, 197-204.	7.1	194
4	Specific Transfection of Inflamed Brain by Macrophages: A New Therapeutic Strategy for Neurodegenerative Diseases. PLoS ONE, 2013, 8, e61852.	1.1	124
5	Stem Cells Loaded With Multimechanistic Oncolytic Herpes Simplex Virus Variants for Brain Tumor Therapy. Journal of the National Cancer Institute, 2014, 106, dju090.	3.0	102
6	Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma. Nature Communications, 2016, 7, 10593.	5.8	99
7	Bimodal Viral Vectors and <i>In Vivo</i> Imaging Reveal the Fate of Human Neural Stem Cells in Experimental Glioma Model. Journal of Neuroscience, 2008, 28, 4406-4413.	1.7	98
8	Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model. Neuro-Oncology, 2016, 18, 1622-1633.	0.6	92
9	Targeting multiple pathways in gliomas with stem cell and viral delivered S-TRAIL and Temozolomide. Molecular Cancer Therapeutics, 2008, 7, 3575-3585.	1.9	78
10	Tumor-homing cytotoxic human induced neural stem cells for cancer therapy. Science Translational Medicine, 2017, 9, .	5.8	71
11	Engineered Mesenchymal Stem Cell/Nanomedicine Spheroid as an Active Drug Delivery Platform for Combinational Glioblastoma Therapy. Nano Letters, 2019, 19, 1701-1705.	4.5	71
12	Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma. Biomaterials, 2016, 90, 116-125.	5.7	57
13	A Novel Molecule Integrating Therapeutic and Diagnostic Activities Reveals Multiple Aspects of Stem Cell-based Therapy. Stem Cells, 2010, 28, 832-841.	1.4	54
14	Neural stem cell therapy for cancer. Methods, 2016, 99, 37-43.	1.9	53
15	Real-time multi-modality imaging of glioblastoma tumor resection and recurrence. Journal of Neuro-Oncology, 2013, 111, 153-161.	1.4	52
16	Sustained Delivery of Doxorubicin via Acetalated Dextran Scaffold Prevents Glioblastoma Recurrence after Surgical Resection. Molecular Pharmaceutics, 2018, 15, 1309-1318.	2.3	38
17	Fibrin gel enhances the antitumor effects of chimeric antigen receptor T cells in glioblastoma. Science Advances, 2021, 7, eabg5841.	4.7	35
18	Tumor Responsive and Tunable Polymeric Platform for Optimized Delivery of Paclitaxel to Treat Glioblastoma, ACS Applied Materials & amp: Interfaces, 2020, 12, 19345-19356	4.0	32

SHAWN D HINGTGEN

#	Article	IF	CITATIONS
19	A First-Generation Multi-Functional Cytokine for Simultaneous Optical Tracking and Tumor Therapy. PLoS ONE, 2012, 7, e40234.	1.1	31
20	Engineering Toxin-Resistant Therapeutic Stem Cells to Treat Brain Tumors. Stem Cells, 2015, 33, 589-600.	1.4	31
21	Fibrin matrices enhance the transplant and efficacy of cytotoxic stem cell therapy for post-surgical cancer. Biomaterials, 2016, 84, 42-53.	5.7	29
22	Synergistic drug combinations for a precision medicine approach to interstitial glioblastoma therapy. Journal of Controlled Release, 2020, 323, 282-292.	4.8	28
23	Developing Implantable Scaffolds to Enhance Neural Stem Cell Therapy for Post-Operative Glioblastoma. Molecular Therapy, 2020, 28, 1056-1067.	3.7	24
24	Polymeric Biomaterial Scaffolds for Tumoricidal Stem Cell Glioblastoma Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 3762-3777.	2.6	14
25	Tumoricidal stem cell therapy enables killing in novel hybrid models of heterogeneous glioblastoma. Neuro-Oncology, 2019, 21, 1552-1564.	0.6	12
26	Developing Bioinspired Three-Dimensional Models of Brain Cancer to Evaluate Tumor-Homing Neural Stem Cell Therapy. Tissue Engineering - Part A, 2021, 27, 857-866.	1.6	11
27	Personalizedâ€induced neural stem cell therapy: Generation, transplant, and safety in a large animal model. Bioengineering and Translational Medicine, 2021, 6, e10171.	3.9	11
28	Generation and Profiling of Tumor-Homing Induced Neural Stem Cells from the Skin of Cancer Patients. Molecular Therapy, 2020, 28, 1614-1627.	3.7	10
29	Delivery of Cytotoxic Mesenchymal Stem Cells with Biodegradable Scaffolds for Treatment of Postoperative Brain Cancer. Methods in Molecular Biology, 2018, 1831, 49-58.	0.4	9
30	Intra-cavity stem cell therapy inhibits tumor progression in a novel murine model of medulloblastoma surgical resection. PLoS ONE, 2018, 13, e0198596.	1.1	9
31	Impact of composite scaffold degradation rate on neural stem cell persistence in the glioblastoma surgical resection cavity. Materials Science and Engineering C, 2020, 111, 110846.	3.8	8
32	Development of next-generation tumor-homing induced neural stem cells to enhance treatment of metastatic cancers. Science Advances, 2021, 7, .	4.7	8
33	Tumor-homing Stem Cell Therapy for Brain Cancer. Current Surgery Reports, 2017, 5, 1.	0.4	7
34	Development and in vivo evaluation of Irinotecan-loaded Drug Eluting Seeds (iDES) for the localised treatment of recurrent glioblastoma multiforme. Journal of Controlled Release, 2020, 324, 1-16.	4.8	7
35	Image-Guided Resection of Glioblastoma and Intracranial Implantation of Therapeutic Stem Cell-seeded Scaffolds. Journal of Visualized Experiments, 2018, , .	0.2	4
36	Use of <scp>FLOSEAL</scp> ® as a scaffold and its impact on induced neural stem cell phenotype, persistence, and efficacy. Bioengineering and Translational Medicine, 2022, 7, .	3.9	3

SHAWN D HINGTGEN

#	Article	IF	CITATIONS
37	Spatiotemporal analysis of induced neural stem cell therapy to overcome advanced glioblastoma recurrence. Molecular Therapy - Oncolytics, 2022, 26, 49-62.	2.0	3
38	Intravenously Infused Stem Cells for Cancer Treatment. Stem Cell Reviews and Reports, 2021, 17, 2025-2041.	1.7	2
39	TMOD-34. REACTIVE ASTROCYTES POTENTIATE TUMOR AGGRESSIVENESS IN AÂMURINE GLIOMA RESECTION AND RECURRENCE MODEL. Neuro-Oncology, 2016, 18, vi214-vi214.	0.6	1
40	Cytotoxic Engineered Induced Neural Stem Cells as an Intravenous Therapy for Primary Non–Small Cell Lung Cancer and Triple-Negative Breast Cancer. Molecular Cancer Therapeutics, 2021, 20, 2291-2301.	1.9	1
41	Next-generation Tumor-homing Induced Neural Stem Cells as an Adjuvant to Radiation for the Treatment of Metastatic Lung Cancer. Stem Cell Reviews and Reports, 2022, , 1.	1.7	1
42	EXTH-59. INTRACRANIAL IMPLANTATION OF TUMORICIDAL STEM CELL-SEEDED SCAFFOLDS AFTER GLIOBLASTOMA RESECTION. Neuro-Oncology, 2018, 20, vi97-vi98.	0.6	0
43	TMOD-31. NOVEL HETEROGENEOUS GLIOBLASTOMA MODELS TO OPTIMIZE HUMAN TUMORICIDAL NEURAL STEM CELL THERAPY. Neuro-Oncology, 2018, 20, vi275-vi275.	0.6	0